127 research outputs found
Team dynamics in emergency surgery teams: results from a first international survey
Background: Emergency surgery represents a unique context. Trauma teams are often multidisciplinary and need to operate under extreme stress and time constraints, sometimes with no awareness of the trauma\u2019s causes or the patient\u2019s personal and clinical information. In this perspective, the dynamics of how trauma teams function is fundamental to ensuring the best performance and outcomes. Methods: An online survey was conducted among the World Society of Emergency Surgery members in early 2021. 402 fully filled questionnaires on the topics of knowledge translation dynamics and tools, non-technical skills, and difficulties in teamwork were collected. Data were analyzed using the software R, and reported following the Checklist for Reporting Results of Internet E-Surveys (CHERRIES). Results: Findings highlight how several surgeons are still unsure about the meaning and potential of knowledge translation and its mechanisms. Tools like training, clinical guidelines, and non-technical skills are recognized and used in clinical practice. Others, like patients\u2019 and stakeholders\u2019 engagement, are hardly implemented, despite their increasing importance in the modern healthcare scenario. Several difficulties in working as a team are described, including the lack of time, communication, training, trust, and ego. Discussion: Scientific societies should take the lead in offering training and support about the abovementioned topics. Dedicated educational initiatives, practical cases and experiences, workshops and symposia may allow mitigating the difficulties highlighted by the survey\u2019s participants, boosting the performance of emergency teams. Additional investigation of the survey results and its characteristics may lead to more further specific suggestions and potential solutions
Reducing the environmental impact of surgery on a global scale: systematic review and co-prioritization with healthcare workers in 132 countries
Background
Healthcare cannot achieve net-zero carbon without addressing operating theatres. The aim of this study was to prioritize feasible interventions to reduce the environmental impact of operating theatres.
Methods
This study adopted a four-phase Delphi consensus co-prioritization methodology. In phase 1, a systematic review of published interventions and global consultation of perioperative healthcare professionals were used to longlist interventions. In phase 2, iterative thematic analysis consolidated comparable interventions into a shortlist. In phase 3, the shortlist was co-prioritized based on patient and clinician views on acceptability, feasibility, and safety. In phase 4, ranked lists of interventions were presented by their relevance to high-income countries and low–middle-income countries.
Results
In phase 1, 43 interventions were identified, which had low uptake in practice according to 3042 professionals globally. In phase 2, a shortlist of 15 intervention domains was generated. In phase 3, interventions were deemed acceptable for more than 90 per cent of patients except for reducing general anaesthesia (84 per cent) and re-sterilization of ‘single-use’ consumables (86 per cent). In phase 4, the top three shortlisted interventions for high-income countries were: introducing recycling; reducing use of anaesthetic gases; and appropriate clinical waste processing. In phase 4, the top three shortlisted interventions for low–middle-income countries were: introducing reusable surgical devices; reducing use of consumables; and reducing the use of general anaesthesia.
Conclusion
This is a step toward environmentally sustainable operating environments with actionable interventions applicable to both high– and low–middle–income countries
Recommended from our members
The role of the DOE weapons laboratories in a changing national security environment: CNSS papers No. 8, April 1988
The contributions of the Department of Energy (DOE) nuclear weapons laboratories to the nation's security are reviewed in testimony before the Subcommittee on Procurement and Military Nuclear Systems of the House Armed Services Committee. Also presented are contributions that technology will make in maintaining the strategic balance through deterrence, treaty verification, and a sound nuclear weapons complex as the nation prepares for significant arms control initiatives. The DOE nuclear weapons laboratories can contribute to the broader context of national security, one that recognizes that military strength can be maintained over the long term only if it is built upon the foundations of economic strength and energy security. 9 refs
Recommended from our members
Factors affecting plastic instability and sheet formability
The strong influence of geometry and materials properties on plastic instability and sheet formability is illustrated with several experimental observations. Geometry (shape) of the specimen or work piece and the evolution of shape with deformation is of great importance. Experiments on sheet and thin-walled tubes have demonstrated convincingly that sheets stretched over a punch are more stable than sheets stretched in-plane; which, in turn, are more stable than expanded thin-walled tubes. All can be explained by the specific interaction of specimen shape with loads and deformations. The materials parameters of greatest importance (Hecker, 1978a) are strain hardening, strain-rate sensitivity, and plastic anisotropy. Several experiments are cited that demonstrate the importance of stress state, large strains, and path changes on the strain-hardening response and on subsequent stability
Recommended from our members
Fracture behavior of a Pt--30% Rh--8% W alloy between room temperature and 1300C
Recommended from our members
Materials response to large plastic deformation
Strain hardening at large plastic strains cannot be inferred from small-strain tensile tests. Most metals and alloys at room temperature do not reach steady state saturation at strain levels of 3 to 5. Typically, some disturbing influence offsets the balance between dislocation generation and annihilation. The most prominent of these appears to be texture formation. However, grain size, second-phase particles, and deformation on shear bands are also important. The effect on hardening of most of these features depends on geometry (or deformation mode) and, hence, no single intrinsic hardening curve can be expected at large strains. It should be noted that high material purity and a torsional deformation mode favor saturation. 42 references, 15 figures
Recommended from our members
Strain hardening of heavily cold-worked metals
It is demonstrated that strain hardening in torsion cannot be correlated with axisymmetric deformation by the von Mises effective stress strain criterion. In fcc materials, the flow stress levels and strain hardening rates are typically lower in torsion and saturation, only at lower stress levels. In bcc iron, a low saturtion stress is observed for torsion, whereas linear hardening is observed for axisymmetric extension. Much of the discrepancy in flow curves can be explained by texture. It is demonstrated that a crystallographic effective stress-strain criterion based on evolving average Taylor factors provides the proper magnitude correction for torsional flow curves in fcc materials. The simple crystallographic analysis does not fully explain the hardening response following deformation path changes and multidirectional loading. 96 references, 42 figures
Recommended from our members
Experiments on plastic deformation at finite strains
The strain hardening behavior of metals at large plastic strains is difficult to assess experimentally. Consequently, many different techniques have been used to study such behavior and no clear experimental picture has evolved. In this paper experiments are reviewed on finite plastic deformation with emphasis on work reported since the comprehensive review of Gil Sevillano, van Houtte, and Aernoudt. The macroscopic strain hardening behavior is the primary concern, but its dependence on crystal structure, purity, alloying, microstructure, stacking fault energy, grain size, and deformation mode, is also discussed
- …