5,997 research outputs found
The Gaussian formula and spherical aberration of the static and moving curved mirrors from Fermat's principle
The Gaussian formula and spherical aberrations of the static and relativistic
curved mirrors are analyzed using the optical path length (OPL) and Fermat's
principle. The geometrical figures generated by the rotation of conic sections
about their symmetry axes are considered for the shapes of the mirrors. By
comparing the results in static and relativistic cases, it is shown that the
focal lengths and the spherical aberration relations of the relativistic
mirrors obey the Lorentz contraction. Further analysis of the spherical
aberrations for both static and relativistic cases have resulted in the
information about the limits for the paraxial approximation, as well as for the
minimum speed of the systems to reduce the spherical aberrations.Comment: 15 pages, 7 figures, uses iopart. Major revisions on the physical
interpretations of the results. Accepted for publication in J. Op
Crowded-Field Astrometry with the Space Interferometry Mission - I. Estimating the Single-Measurement Astrometric Bias Arising from Confusion
The accuracy of position measurements on stellar targets with the future
Space Interferometry Mission (SIM) will be limited not only by photon noise and
by the properties of the instrument (design, stability, etc.) and the overall
measurement program (observing strategy, reduction methods, etc.), but also by
the presence of other "confusing" stars in the field of view (FOV). We use a
simple "phasor" model as an aid to understanding the main effects of this
"confusion bias" in single observations with SIM. This analytic model has been
implemented numerically in a computer code and applied to a selection of
typical SIM target fields drawn from some of the Key Projects already accepted
for the Mission. We expect that less than 1% of all SIM targets will be
vulnerable to confusion bias; we show that for the present SIM design,
confusion may be a concern if the surface density of field stars exceeds 0.4
star/arcsec^2. We have developed a software tool as an aid to ascertaining the
possible presence of confusion bias in single observations of any arbitrary
field. Some a priori knowledge of the locations and spectral energy
distributions of the few brightest stars in the FOV is helpful in establishing
the possible presence of confusion bias, but the information is in general not
likely to be available with sufficient accuracy to permit its removal. We
discuss several ways of reducing the likelihood of confusion bias in crowded
fields. Finally, several limitations of the present semi-analytic approach are
reviewed, and their effects on the present results are estimated. The simple
model presented here provides a good physical understanding of how confusion
arises in a single SIM observation, and has sufficient precision to establish
the likelihood of a bias in most cases.Comment: 28 pages, 20 figures, 1 table; to appear in December 2007 issue of
PAS
Coherent flash of light emitted by a cold atomic cloud
When a resonant laser sent on an optically thick cold atomic cloud is
abruptly switched off, a coherent flash of light is emitted in the forward
direction. This transient phenomenon is observed due to the highly resonant
character of the atomic scatterers. We analyze quantitatively its
spatio-temporal properties and show very good agreement with theoretical
predictions. Based on complementary experiments, the phase of the coherent
field is reconstructed without interferometric tools.Comment: Submitted to Phys. Rev. Let
Recommended from our members
Solid Freeform Fabrication of Functional Silicon Nitride Ceramics by Laminated Object Manufacturing 1
The processing of silicon nitride (Si3N4) structural ceramics by Laminated Object
Manufacturing (LOM) using ceramic tape preforms was investigated. The key processing stages
involved green shape formation (which used the LOM process), followed by the burnout of all
organics, and final densification by pressureless sintering. Two material systems were
considered. These were a) monolithic Si3N4 and b) a preceramic polymer infiltrated Si3N4. The
raw materials for the process were tape preforms of Si3N4, which were fabricated by standard
tape casting techniques.
Mechanical property data obtained for the LOM processed Si3N4 showed high strength and
fracture toughness values. The room temperature and high temperature (1260 o
C) flexural
strengths were in the range of 700-900 MPa and 360-400 MPa, respectively. The fracture
toughness averaged from 5.5-7.5 MPa.m1/2. These strength and fracture toughness values are
comparable to those reported for conventionally prepared Si3N4 ceramics. Thus, this research
demonstrated that the LOM technique is a viable method for preparing functional Si3N4 ceramics
with good physical and mechanical properties.Mechanical Engineerin
Mass and Spin of Poincare Gauge Theory
We discuss two expressions for the conserved quantities (energy momentum and
angular momentum) of the Poincar\'e Gauge Theory. We show, that the variations
of the Hamiltonians, of which the expressions are the respective boundary
terms, are well defined, if we choose an appropriate phase space for asymptotic
flat gravitating systems. Furthermore, we compare the expressions with others,
known from the literature.Comment: 16 pages, plain-tex; to be published in Gen. Rel. Gra
Coherent state triplets and their inner products
It is shown that if H is a Hilbert space for a representation of a group G,
then there are triplets of spaces F_H, H, F^H, in which F^H is a space of
coherent state or vector coherent state wave functions and F_H is its dual
relative to a conveniently defined measure. It is shown also that there is a
sequence of maps F_H -> H -> F^H which facilitates the construction of the
corresponding inner products. After completion if necessary, the F_H, H, and
F^H, become isomorphic Hilbert spaces. It is shown that the inner product for H
is often easier to evaluate in F_H than F^H. Thus, we obtain integral
expressions for the inner products of coherent state and vector coherent state
representations. These expressions are equivalent to the algebraic expressions
of K-matrix theory, but they are frequently more efficient to apply. The
construction is illustrated by many examples.Comment: 33 pages, RevTex (Latex2.09) This paper is withdrawn because it
contained errors that are being correcte
An in-depth look at prior art in fast round-robin arbiter circuits
Arbiters are found where shared resources exist such as busses, switching fabrics, processing elements. Round-robin is a fair arbitration method, where requestors get near-equal shares of a common resource or service. Round-robin arbitration (RRA) finds use in network switches/routers and processor boards/systems as well as many other applications that have concurrency. Today's electronic systems require arbiters with hundreds of ports (e.g., switching fabrics with virtual I/O queues) and clock speeds near the limits of even the latest microelectronics fabrication processes/libraries. Achieving high clock speeds in the presence of large number of ports is only possible with highly parallel arbiter architectures. This paper presents an in-depth literature survey of previous work on this problem. It looks at RRA work in the literature in a bigger context, then defines the typical RRA problem (RRA_typical), and specifically investigates work on fast architectures that solve the RRA_typical problem. There are five such works that are really competitive. This report takes a very in-depth look at these works. It explains each architecture and how/why it works from a unique perspective that cannot be found in the original publication of that architecture. It also proposes improvements to these architectures. We wrote generators for the improved versions of these architectures. We will share a summary of synthesis results in this report – although a detailed account of how these results were obtained and their analysis is the subject of another (upcoming) publicatio
Looking back to see the future: building nuclear power plants in Europe
The so-called ‘nuclear renaissance’ in Europe is promulgated by the execution of two large engineering projects involving the construction of two European Pressurized Reactors (EPRs) in Flamanville, France and Olkiluoto in Finland. As both projects have faced budget overruns and delays, this paper analyses their governance and history to derive lessons useful for the construction of future projects. Analysis indicates that the reasons for these poor outcomes are: overoptimistic estimations, first-of-a-kind (FOAK) issues and undervaluation of regulation requirements. These pitfalls have the potential to impact on many other engineering construction projects and highlight fruitful areas of further research into project performance
String amplitudes in arbitrary dimensions
We calculate gravitational dressed tachyon correlators in non critcal
dimensions. The 2D gravity part of our theory is constrained to constant
curvature. Then scaling dimensions of gravitational dressed vertex operators
are equal to their bare conformal dimensions. Considering the model as d+2
dimensional critical string we calculate poles of generalized Shapiro-Virasoro
amplitudes.Comment: 14 page
- …