4,865 research outputs found

    Solitons in Trapped Bose-Einstein condensates in one-dimensional optical lattices

    Full text link
    We use Quantum Monte Carlo simulations to show the presence and study the properties of solitons in the one dimensional soft-core bosonic Hubbard model with near neighbor interaction in traps. We show that when the half-filled Charge Density Wave (CDW) phase is doped, solitons are produced and quasi long range order established. We discuss the implications of these results for the presence and robustness of this solitonic phase in Bose-Einstein Condensates (BEC) on one dimensional optical lattices in traps and study the associated excitation spectrum. The density profile exhibits the coexistence of Mott insulator, CDW, and superfluid regions.Comment: 5 pages, Latex with figure

    Depletion induced isotropic-isotropic phase separation in suspensions of rod-like colloids

    Get PDF
    When non-adsorbing polymers are added to an isotropic suspension of rod-like colloids, the colloids effectively attract each other via depletion forces. We performed Monte Carlo simulations to study the phase diagram of such rod-polymer mixture. The colloidal rods were modelled as hard spherocylinders; the polymers were described as spheres of the same diameter as the rods. The polymers may overlap with no energy cost, while overlap of polymers and rods is forbidden. Large amounts of depletant cause phase separation of the mixture. We estimated the phase boundaries of isotropic-isotropic coexistence both, in the bulk and in confinement. To determine the phase boundaries we applied the grand canonical ensemble using successive umbrella sampling [J. Chem. Phys. 120, 10925 (2004)], and we performed a finite-size scaling analysis to estimate the location of the critical point. The results are compared with predictions of the free volume theory developed by Lekkerkerker and Stroobants [Nuovo Cimento D 16, 949 (1994)]. We also give estimates for the interfacial tension between the coexisting isotropic phases and analyse its power-law behaviour on approach of the critical point

    Magnetic and Transport Properties of a Coupled Hubbard Bilayer with Electron and Hole Doping

    Full text link
    The single band, two dimensional Hubbard Hamiltonian has been extensively studied as a model for high temperature superconductivity. While Quantum Monte Carlo simulations within the dynamic cluster approximation are now providing considerable evidence for a d-wave superconducting state at low temperature, such a transition remains well out of reach of finite lattice simulations because of the "sign problem". We show here that a bilayer Hubbard model, in which one layer is electron doped and one layer is hole doped, can be studied to lower temperatures and exhibits an interesting signal of d-wave pairing. The results of our simulations bear resemblance to a recent report on the magnetic and superconducting properties of Ba2_2Ca3_3Cu4_4O8_8F2_2 which contains both electron and hole doped CuO2_2 planes. We also explore the phase diagram of bilayer models in which each sheet is at half-filling

    Quantum Monte Carlo Study of an Interaction-Driven Band Insulator to Metal Transition

    Full text link
    We study the transitions from band insulator to metal to Mott insulator in the ionic Hubbard model on a two dimensional square lattice using determinant Quantum Monte Carlo. Evaluation of the temperature dependence of the conductivity demonstrates that the metallic region extends for a finite range of interaction values. The Mott phase at strong coupling is accompanied by antiferromagnetic (AF) order. Inclusion of these intersite correlations changes the phase diagram qualitatively compared to dynamical mean field theory.Comment: 4 pages, 6 figure

    A perception and manipulation system for collecting rock samples

    Get PDF
    An important part of a planetary exploration mission is to collect and analyze surface samples. As part of the Carnegie Mellon University Ambler Project, researchers are investigating techniques for collecting samples using a robot arm and a range sensor. The aim of this work is to make the sample collection operation fully autonomous. Described here are the components of the experimental system, including a perception module that extracts objects of interest from range images and produces models of their shapes, and a manipulation module that enables the system to pick up the objects identified by the perception module. The system was tested on a small testbed using natural terrain

    Attractive Hubbard Model on a Honeycomb Lattice

    Full text link
    We study the attractive fermionic Hubbard model on a honeycomb lattice using determinantal quantum Monte Carlo simulations. By increasing the interaction strength U (relative to the hopping parameter t) at half-filling and zero temperature, the system undergoes a quantum phase transition at 5.0 < U_c/t < 5.1 from a semi-metal to a phase displaying simultaneously superfluid behavior and density order. Doping away from half-filling, and increasing the interaction strength at finite but low temperature T, the system always appears to be a superfluid exhibiting a crossover between a BCS and a molecular regime. These different regimes are analyzed by studying the spectral function. The formation of pairs and the emergence of phase coherence throughout the sample are studied as U is increased and T is lowered

    Effects of Spatio-Temporal Aliasing on Out-the-Window Visual Systems

    Get PDF
    Designers of out-the-window visual systems face a challenge when attempting to simulate the outside world as viewed from a cockpit. Many methodologies have been developed and adopted to aid in the depiction of particular scene features, or levels of static image detail. However, because aircraft move, it is necessary to also consider the quality of the motion in the simulated visual scene. When motion is introduced in the simulated visual scene, perceptual artifacts can become apparent. A particular artifact related to image motion, spatiotemporal aliasing, will be addressed. The causes of spatio-temporal aliasing will be discussed, and current knowledge regarding the impact of these artifacts on both motion perception and simulator task performance will be reviewed. Methods of reducing the impact of this artifact are also addresse

    Observations of Microwave Continuum Emission from Air Shower Plasmas

    Full text link
    We investigate a possible new technique for microwave measurements of ultra-high energy cosmic ray (UHECR) extensive air showers which relies on detection of expected continuum radiation in the microwave range, caused by free-electron collisions with neutrals in the tenuous plasma left after the passage of the shower. We performed an initial experiment at the AWA (Argonne Wakefield Accelerator) laboratory in 2003 and measured broadband microwave emission from air ionized via high energy electrons and photons. A follow-up experiment at SLAC (Stanford Linear Accelerator Center) in summer of 2004 confirmed the major features of the previous AWA observations with better precision and made additional measurements relevant to the calorimetric capabilities of the method. Prompted by these results we built a prototype detector using satellite television technology, and have made measurements indicating possible detection of cosmic ray extensive air showers. The method, if confirmed by experiments now in progress, could provide a high-duty cycle complement to current nitrogen fluorescence observations of UHECR, which are limited to dark, clear nights. By contrast, decimeter microwave observations can be made both night and day, in clear or cloudy weather, or even in the presence of moderate precipitation.Comment: 15 pages, 13 figure
    corecore