2,808 research outputs found
Solitons in Trapped Bose-Einstein condensates in one-dimensional optical lattices
We use Quantum Monte Carlo simulations to show the presence and study the
properties of solitons in the one dimensional soft-core bosonic Hubbard model
with near neighbor interaction in traps. We show that when the half-filled
Charge Density Wave (CDW) phase is doped, solitons are produced and quasi long
range order established. We discuss the implications of these results for the
presence and robustness of this solitonic phase in Bose-Einstein Condensates
(BEC) on one dimensional optical lattices in traps and study the associated
excitation spectrum. The density profile exhibits the coexistence of Mott
insulator, CDW, and superfluid regions.Comment: 5 pages, Latex with figure
Magnetic and Transport Properties of a Coupled Hubbard Bilayer with Electron and Hole Doping
The single band, two dimensional Hubbard Hamiltonian has been extensively
studied as a model for high temperature superconductivity. While Quantum Monte
Carlo simulations within the dynamic cluster approximation are now providing
considerable evidence for a d-wave superconducting state at low temperature,
such a transition remains well out of reach of finite lattice simulations
because of the "sign problem". We show here that a bilayer Hubbard model, in
which one layer is electron doped and one layer is hole doped, can be studied
to lower temperatures and exhibits an interesting signal of d-wave pairing. The
results of our simulations bear resemblance to a recent report on the magnetic
and superconducting properties of BaCaCuOF which contains
both electron and hole doped CuO planes. We also explore the phase diagram
of bilayer models in which each sheet is at half-filling
Depletion induced isotropic-isotropic phase separation in suspensions of rod-like colloids
When non-adsorbing polymers are added to an isotropic suspension of rod-like
colloids, the colloids effectively attract each other via depletion forces. We
performed Monte Carlo simulations to study the phase diagram of such
rod-polymer mixture. The colloidal rods were modelled as hard spherocylinders;
the polymers were described as spheres of the same diameter as the rods. The
polymers may overlap with no energy cost, while overlap of polymers and rods is
forbidden.
Large amounts of depletant cause phase separation of the mixture. We
estimated the phase boundaries of isotropic-isotropic coexistence both, in the
bulk and in confinement. To determine the phase boundaries we applied the grand
canonical ensemble using successive umbrella sampling [J. Chem. Phys. 120,
10925 (2004)], and we performed a finite-size scaling analysis to estimate the
location of the critical point. The results are compared with predictions of
the free volume theory developed by Lekkerkerker and Stroobants [Nuovo Cimento
D 16, 949 (1994)]. We also give estimates for the interfacial tension between
the coexisting isotropic phases and analyse its power-law behaviour on approach
of the critical point
Quantum Monte Carlo Study of an Interaction-Driven Band Insulator to Metal Transition
We study the transitions from band insulator to metal to Mott insulator in
the ionic Hubbard model on a two dimensional square lattice using determinant
Quantum Monte Carlo. Evaluation of the temperature dependence of the
conductivity demonstrates that the metallic region extends for a finite range
of interaction values. The Mott phase at strong coupling is accompanied by
antiferromagnetic (AF) order. Inclusion of these intersite correlations changes
the phase diagram qualitatively compared to dynamical mean field theory.Comment: 4 pages, 6 figure
Attractive Hubbard Model on a Honeycomb Lattice
We study the attractive fermionic Hubbard model on a honeycomb lattice using
determinantal quantum Monte Carlo simulations. By increasing the interaction
strength U (relative to the hopping parameter t) at half-filling and zero
temperature, the system undergoes a quantum phase transition at 5.0 < U_c/t <
5.1 from a semi-metal to a phase displaying simultaneously superfluid behavior
and density order. Doping away from half-filling, and increasing the
interaction strength at finite but low temperature T, the system always appears
to be a superfluid exhibiting a crossover between a BCS and a molecular regime.
These different regimes are analyzed by studying the spectral function. The
formation of pairs and the emergence of phase coherence throughout the sample
are studied as U is increased and T is lowered
U.S. adolescent and adult women\u27s experiences accessing and using toilets in schools, workplaces, and public spaces: A multi-site focus group study to inform future research in bladder health
The World Health Organization recognizes access to clean and safe toilets as crucial for public health. This study explored U.S. adolescent and adult cisgender women\u27s lived experiences accessing toilets in schools, workplaces, and public spaces. As part of the Prevention of Lower Urinary Tract Symptoms (PLUS) Research Consortium, we conducted 44 focus groups with female participants (n = 360; ages 11-93). Focus groups were stratified by age (11-14, 15-17, 18-25, 26-44, 45-64, 65+) and conducted across 7 geographically diverse U.S. sites from July 2017-April 2018. Using a transdisciplinary approach, we conducted conventional qualitative coding informed by our PLUS conceptual framework and used content analysis processes to identify salient themes. Across settings, toilet access was restricted by gatekeepers (i.e., individuals who control access to toilets). In contrast, self-restricting toilet use (deciding not to use the toilet despite biologic need to urinate) was based on internalized norms to prioritize school and job responsibilities over urination. In public spaces, self-restricting use was largely in response to lack of cleanliness. Across the life course, participants perceived gender disparities in the ability to easily access public toilets. Further research is needed to determine if and how these factors impact bladder health across the life course
Experimental Limit on the Cosmic Diffuse Ultra-high Energy Neutrino Flux
We report results from 120 hours of livetime with the Goldstone Lunar
Ultra-high energy neutrino Experiment (GLUE). The experiment searches for <10
ns microwave pulses from the lunar regolith, appearing in coincidence at two
large radio telescopes separated by 22 km and linked by optical fiber. Such
pulses would arise from subsurface electromagnetic cascades induced by
interactions of >= 100 EeV neutrinos in the lunar regolith. No candidates are
yet seen, and the implied limits constrain several current models for
ultra-high energy neutrino fluxes.Comment: 4 pages, 4 figures, revtex4 style. New intro section, Fig. 2, Fig 4;
in final PRL revie
Atomic lattice excitons: from condensates to crystals
We discuss atomic lattice excitons (ALEs), bound particle-hole pairs formed
by fermionic atoms in two bands of an optical lattice. Such a system provides a
clean setup to study fundamental properties of excitons, ranging from
condensation to exciton crystals (which appear for a large effective mass ratio
between particles and holes). Using both mean-field treatments and 1D numerical
computation, we discuss the properities of ALEs under varying conditions, and
discuss in particular their preparation and measurement.Comment: 19 pages, 15 figures, changed formatting for journal submission,
corrected minor errors in reference list and tex
Lifetime physical activity and breast cancer risk in the Shanghai Breast Cancer Study
Overall physical activity in adolescence and adulthood, and changes in activity over the lifespan were analysed by in-person interviews among 1459 women newly diagnosed with breast cancer and 1556 age-matched controls in urban Shanghai. Physical activity from exercise and sports, household, and transportation (walking and cycling) was assessed in adolescence (13–19 y) and adulthood (last 10 y), as was lifetime occupational activity. Logistic regression was used to estimate odds ratios (OR) and 95% confidence limits (OR (95% CL)) while controlling for confounders. Risk was reduced for exercise only in adolescence (OR = 0.84 (0.70–1.00)); exercise only in adulthood (OR = 0.68 (0.53–0.88)), and was further reduced for exercise in both adolescence and adulthood (OR = 0.47 (0.36–0.62)). Graded reductions in risk were noted with increasing years of exercise participation (OR 1–5 yrs= 0.81 (0.67–0.94); OR 6–10 yrs= 0.74 (0.59–0.93); OR 11–15 yrs= 0.55 (0.38–0.79); OR 16 + yrs= 0.40 (0.27–0.60);Ptrend,< 0.01). Lifetime occupational activity also was inversely related to risk (Ptrend< 0.01). These findings demonstrate that consistently high activity levels throughout life reduce breast cancer risk. Furthermore, they suggest that women may reduce their risk by increasing their activity levels in adulthood. © 2001 Cancer Research Campaignhttp://www.bjcancer.co
Phase behaviour of charged colloidal sphere dispersions with added polymer chains
We study the stability of mixtures of highly screened repulsive charged
spheres and non-adsorbing ideal polymer chains in a common solvent using free
volume theory. The effective interaction between charged colloids in an aqueous
salt solution is described by a screened-Coulomb pair potential, which
supplements the pure hard-sphere interaction. The ideal polymer chains are
treated as spheres that are excluded from the colloids by a hard-core
interaction, whereas the interaction between two ideal chains is set to zero.
In addition, we investigate the phase behaviour of charged colloid-polymer
mixtures in computer simulations, using the two-body (Asakura-Oosawa pair
potential) approximation to the effective one-component Hamiltonian of the
charged colloids. Both our results obtained from simulations and from free
volume theory show similar trends. We find that the screened-Coulomb repulsion
counteracts the effect of the effective polymer-mediated attraction. For
mixtures of small polymers and relatively large charged colloidal spheres, the
fluid-crystal transition shifts to significantly larger polymer concentrations
with increasing range of the screened-Coulomb repulsion. For relatively large
polymers, the effect of the screened-Coulomb repulsion is weaker. The resulting
fluid-fluid binodal is only slightly shifted towards larger polymer
concentrations upon increasing the range of the screened-Coulomb repulsion. In
conclusion, our results show that the miscibility of dispersions containing
charged colloids and neutral non-adsorbing polymers increases, upon increasing
the range of the screened-Coulomb repulsion, or upon lowering the salt
concentration, especially when the polymers are small compared to the colloids.Comment: 25 pages,13 figures, accepted for publication on J.Phys.:Condens.
Matte
- …