10 research outputs found

    Optimal tissue sources of mesenchymal stromal cells for clinical applications

    No full text
    Mesenchymal stromal cells (MSCs) are multipotent cells that can differentiate into the mesenchymal lineages of fat, bone, and cartilage. They are of particular interest because they can preferentially migrate to sites of inflammation and injury and can be transplanted into patients without the need for immune suppression. These remarkable qualities have allowed MSCs to be used for a range of differing medical conditions within the clinic and they are proving to be a promising candidate for an allogeneic "off-the-shelf' cellular therapy ready for immediate use in acute or chronic medical settings. Although these cells were traditionally derived from the bone marrow, investigators have found that MSCs can be derived from alternative sources that are younger, more easily accessible and usually regarded as "biological waste material." While MSC-like populations have been isolated from almost every tissue in the body, it has been found that MSC populations retain a "memory of tissue origin" resulting in different functional abilities. This suggests that differences in MSC populations may be important for the development of future MSC therapeutic approaches for tissue and organ repair and that careful consideration is required when choosing a source of MSCs for clinical trials

    Evaluation of methods for cultivating limbal mesenchymal stromal cells

    Get PDF
    Background: Mesenchymal stromal cells (MSC) with similar properties to bone marrow derived mesenchymal stromal cells (BM-MSC) have recently been grown from the limbus of the human cornea. We presently contribute to this novel area of research by evaluating methods for culturing human limbal MSC (L-MSC). Methods: Four basic strategies are compared: serum-supplemented medium (10% foetal bovine serum; FBS), standard serum-free medium supplemented with B-27, epidermal growth factor, and fibroblast growth factor 2, or one of two commercial serum-free media including Defined Keratinocyte Serum Free Medium (Invitrogen), and MesenCult-XF (Stem Cell Technologies). The phenotype of resulting cultures was examined using photography, flow cytometry (for CD34, CD45, CD73, CD90, CD105, CD141, CD271), immunocytochemistry (α-sma), differentiation assays (osteogenesis, adipogenesis, chrondrogenesis), and co-culture experiments with human limbal epithelial (HLE) cells. Results: While all techniques supported to varying degrees establishment of cultures, sustained growth and serial propagation was only achieved in 10% FBS medium or MesenCult-XF medium. Cultures established in 10% FBS medium were 70-80% CD34-/CD45-/CD90+/CD73+/CD105+, approximately 25% α-sma+, and displayed multi-potency. Cultures established in MesenCult-XF were >95% CD34-/CD45-/CD90+/CD73+/CD105+, 40% CD141+, rarely expressed α-sma, and displayed multi-potency. L-MSC supported growth of HLE cells, with the largest epithelial islands being observed in the presence of MesenCult-XF-grown L-MSC. All HLE cultures supported by L-MSC widely expressed the progenitor cell marker ∆Np63, along with the corneal differentiation marker cytokeratin 3. Conclusions: We conclude that MesenCult-XFÂź is a superior culture system for L-MSC, but further studies are required to explore the significance of CD141 expression in these cells

    Manufacturing perinatal stem cells for clinical applications

    No full text
    Mesenchymal cells are being increasingly explored in clinical trials. They are promising candidates for allogeneic “off-the-shelf” cellular therapy because they preferentially migrate to sites of inflammation and injury and can be transplanted into patients without the need for immune suppression. We used mesenchymal stromal cells derived from term placenta for our clinical trial program exploring the use of these cells. In this chapter we describe the methods that we utilised to harvest and administer these cells according to the Code of Good Manufacturing Practice principles and according to policies and procedures of our internal Quality Management System based on the International Organisation for Standardisation (ISO) requirements. Although hematopoietic stem cells are present in placenta, this chapter focuses solely on mesenchymal cells in the term placenta

    Immunosuppressive properties of mesenchymal stromal cell cultures derived from the limbus of human and rabbit corneas

    Get PDF
    Background aims Mesenchymal stromal cells (MSCs) cultivated from the corneal limbus (L-MSCs) provide a potential source of cells for corneal repair. In the present study, we investigated the immunosuppressive properties of human L-MSCs and putative rabbit L-MSCs to develop an allogeneic therapy and animal model of L-MSC transplantation. Methods MSC-like cultures were established from the limbal stroma of human and rabbit (New Zealand white) corneas using either serum-supplemented medium or a commercial serum-free MSC medium (MesenCult-XF Culture Kit; Stem Cell Technologies, Melbourne, Australia). L-MSC phenotype was examined by flow cytometry. The immunosuppressive properties of L-MSC cultures were assessed using mixed leukocyte reactions. L-MSC cultures were also tested for their ability to support colony formation by primary limbal epithelial (LE) cells. Results Human L-MSC cultures were typically CD34−, CD45− and HLA-DR− and CD73+, CD90+, CD105+ and HLA-ABC+. High levels (>80%) of CD146 expression were observed for L-MSC cultures grown in serum-supplemented medium but not cultures grown in MesenCult-XF (approximately 1%). Rabbit L-MSCs were approximately 95% positive for major histocompatibility complex class I and expressed lower levels of major histocompatibility complex class II (approximately 10%), CD45 (approximately 20%), CD105 (approximately 60%) and CD90 (<10%). Human L-MSCs and rabbit L-MSCs suppressed human T-cell proliferation by up to 75%. Conversely, L-MSCs from either species stimulated a 2-fold to 3-fold increase in LE cell colony formation. Conclusions L-MSCs display immunosuppressive qualities in addition to their established non-immunogenic profile and stimulate LE cell growth in vitro across species boundaries. These results support the potential use of allogeneic L-MSCs in the treatment of corneal disorders and suggest that the rabbit would provide a useful pre-clinical model

    Limbal mesenchymal stromal cells (L-MSC) display immunosuppressive properties across donor and species boundaries [Conference Abstract]

    No full text
    All articles are also free to read on journal website Purpose - We have evaluated the immunosuppressive properties of L-MSC with the view to using these cells in allogeneic cell therapies for corneal disorders. We hypothesized that L-MSC cultures would suppress T-cell activation, in a similar way to those established from human bone marrow (BM-MSC). Methods - MSC cultures were established from the limbal stroma of cadaveric donor eye tissue (up to 1 week postmortem) using either conventional serum-supplemented growth medium or a commercial serum-free medium optimized for bone marrow derived MSC (MesenCult-XF system). The MSC phenotype was examined by flow cytometry according to current and emerging markers for human MSC. Immunosuppressive properties were assessed using a mixed lymphocyte reaction (MLR) assay, whereby the white cell fraction from two immunologically incompatible blood donors are cultured together in direct contact with growth arrested MSC. T-cell activation (proliferation) was measured by uptake of tritiated thymidine. Human L-MSC were tested in parallel with human BM-MSC and rabbit L-MSC. Human and rabbit L-MSC were also tested for their ability to stimulate the growth of limbal epithelial (LE) cells in colony formation assays (for both human as well as rabbit LE cells). Results - L-MSC cultures were >95% negative for CD34, CD45 and HLA-DR and positive for CD73, CD90, CD105 and HLA-ABC. Modest levels (30%) of CD146 expression were observed for L-MSC cultures grown in serum-supplemented growth medium, but not those grown in MesenCult-XF. All MSC cultures derived from both human and rabbit tissue suppressed T-cell activation to varying degrees according to culture technique and species (MesenCult-XF >> serum-fed cultures, rabbit L-MSC >> human L-MSC). All L-MSC stimulated colony formation by LE cells irrespectively of the combination of cell species used. Conclusions - L-MSC display immunosuppressive qualities, in addition to their established non-immunogenic cell surface marker profile, and stimulate LE cell growth in vitro across species boundaries. These results support the potential use of allogeneic or even xenogeneic L-MSC in the treatment of corneal disorders

    Multipotent human stromal cells isolated from cord blood, term placenta and adult bone marrow show distinct differences in gene expression pattern

    Get PDF
    Multipotent mesenchymal stromal cells derived from human placenta (pMSCs), and unrestricted somatic stem cells (USSCs) derived from cord blood share many properties with human bone marrow-derived mesenchymal stromal cells (bmMSCs) and are currently in clinical trials for a wide range of clinical settings. Here we present gene expression profiles of human cord blood-derived unrestricted somatic stem cells (USSCs), human placental-derived mesenchymal stem cells (hpMSCs), and human bone marrow-derived mesenchymal stromal cells (bmMSCs), all derived from four different donors. The microarray data are available on the ArrayExpress database (www.ebi.ac.uk/arrayexpress) under accession number E-TABM-880. Additionally, the data has been integrated into a public portal, www.stemformatics.org. Our data provide a resource for understanding the differences in MSCs derived from different tissues

    Therapeutic applications of mesenchymal stromal cells

    No full text
    Mesenchymal stromal cells (MSC) are multipotent cells that can be derived from many different organs and tissues. They have been demonstrated to play a role in tissue repair and regeneration in both preclinical and clinical studies. They also have remarkable immunosuppressive properties. We describe their application in settings that include the cardiovascular, central nervous, gastrointestinal, renal, orthopaedic and haematopoietic systems. Manufacturing of MSC for clinical trials is also discussed. Since tissue matching between MSC donor and recipient does not appear to be required, MSC may be the first cell type able to be used as an “off-the-shelf” therapeutic product
    corecore