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(bmMSCs)
• placental-derived mesenc
• human cord blood-derive

cells (USSCs)
Sex Male and female
Sequencer or array type Human whole-genome Illum

BeadChips (Illumina, Inc.)
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Experimental factors Tissue comparison
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Multipotent mesenchymal stromal cells derived from human placenta (pMSCs), and unrestricted somatic stem
cells (USSCs) derived from cord blood share many properties with human bone marrow-derived mesenchymal
stromal cells (bmMSCs) and are currently in clinical trials for a wide range of clinical settings. Here we present
gene expression profiles of human cord blood-derived unrestricted somatic stem cells (USSCs), human
placental-derived mesenchymal stem cells (hpMSCs), and human bone marrow-derived mesenchymal stromal
cells (bmMSCs), all derived from four different donors. The microarray data are available on the ArrayExpress
database (www.ebi.ac.uk/arrayexpress) under accession number E-TABM-880. Additionally, the data has been
integrated into a public portal,www.stemformatics.org. Our data provide a resource for understanding the differ-
ences in MSCs derived from different tissues.

© 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/3.0/).
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Direct link to deposited data

http://www.ebi.ac.uk/arrayexpress/experiments/E-TABM-880/
http://www.stemformatics.org/datasets/view/6064

Experimental design, materials and methods

Isolation and culture of cells

USSCs
Cord blood was collected with informed consent from healthy

mothers undergoing elective Caesarean section. The protocol was ap-
proved by theUniversity ofMelbourne and the RoyalWomen's Hospital
Human Ethics Review Committees. A USSC population was successfully
generated as described byKögler et al., 2004. The phenotype of this pop-
ulation has previously been published [1,2]. Cells from passages 5–8
were used in this study.

bmMSCs and pMSCs
Human bone marrow was obtained from healthy donors after in-

formed consent. Placentas were obtained from healthy mothers during
routine elective Caesarean section births at or near term. Full informed
consent was obtained. The protocols used to obtain bone marrow and
the CC BY license (http://creativecommons.org/licenses/by/3.0/).
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Table 1
Cell surface markers on bmMSCs, pMSCs and USSCs.

Marker association CD number/name Other name bmMSC hpMSC USSC

Mesenchymal stromal cell-associated markers CD29 Integrinβ1 Positive Positive Positive
CD44 HCAM (homing cell adhesion molecule) Positive Positive Positive
CD73 Ecto-5′-nucleotidase Positive Positive Positive
CD90 Thy-1 Positive Positive Positive
CD105 Endoglin Positive Positive Positive
CD146 MCAM (melanoma cell adhesion molecule) Positive Not done Positive
GD2 Neural ganglioside 2 Faint staining Faint staining Faint staining

Mesenchymal stem cell-associated marker Stro-1 Stromal cell molecule-1 Negative Negative Negative
Endothelial marker CD31 PECAM-1 (platelet/endothelial cell adhesion molecule) Negative Negative Negative
Hematopoietic cell-associated markers CD34 Mucosialin Negative Negative Negative

CD45 Leukocyte common marker Negative Negative Negative
Other adhesion molecules CD49d VLA-4 (very late antigen-4) Positive Positive Positive

CD49e VLA-5a (very late antigen-5a) Positive Positive Positive
CD50 ICAM-3 (intercellular adhesion molecule) Negative Faint staining Negative
CD166 ALCAM (activated leukocyte cell adhesion molecule) Positive Positive Positive

Pluripotency markers SSEA-4 Stage-specific embryonic antigen-4 Negative Negative Negative
TRA 1-60 TRA (Tumor Rejection Antigen) Negative Negative Negative
TRA 1-81 TRA (Tumor Rejection Antigen) Negative Negative Negative
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placentalMSCs have been described [3,4]. Cells from passages 4–6were
used in this study. Protocols for the isolation and use of each population
were approved by the Mater Health Services Human Ethics Review
Committee, Brisbane.

Differentiation assays

Osteogenic lineage
Cells were cultured for 21 days in medium containing 10–7M dexa-

methasone, 10mM glycerol-2-phosphate disodium salt (Sigma) and 50
μg/ml ascorbic acid 2 phosphate (Sigma). Cells were fixed for 10 min
with 70% ice-cold ethanol at 4 °C and stained with 1% Alizarin Red S
(Sigma) in distilled water, pH 4.2. After cells were washed in distilled
water and a final wash with PBS (Ca2+ and Mg2+ free), images were
captured using a Leica DMIRB inverted microscope and AxioVision 4.2
software (Carl Zeiss AG, www.zeiss.com).

Adipogenic lineage
Cells were cultured inmedium containing DMEM, 1 μMdexametha-

sone (Sigma), 5 μg/ml insulin (Sigma), 60 μM indomethacin (Sigma)
and 0.5 mM 3-isobutyl-1-methylxanthine (IBMX; Sigma) for 14 days.
Adipogenic differentiation was assessed by staining cells with Oil Red
O (Sigma).

Flow cytometry

To detect the presence of cell surface antigens, cells were washed in
PBS and detached from flasks using TrypLE Select (Invitrogen). Cells
were incubated for 20 min at 4 °C with monoclonal antibodies to CD29,
CD31, CD34, CD44, CD45, CD49d, CD49e, CD50, CD73, CD90, CD105,
Table 2
Chemokine receptor display by bmMSCs, hpMSCs and UCCSs.

Chemokine
receptor

bmMSC surface
display

bmMSC intracellular
display

hpMSC cell surf
display

CCR1 Faint staining Positive Faint staining
CCR3 Negative Positive Negative
CCR5 Negative Negative Negative
CCR8 Faint staining Negative Faint staining
CCR10 Negative Negative Negative
CCR11 Faint staining Negative Faint staining
CXCR3 Negative Positive Negative
CXCR4 Positive Positive Positive
CD146, CD166, GD2, Stro-1, SSEA-4, TRA-1-60 and TRA-1-81, CCR1,
CCR3, CCR5, CCR8, CCR10, CCR11, CXCR3, and CXCR4 (BD Biosciences).
Flow cytometry analysis was performed on an LSR II (Becton Dickinson)
and analyzed using FCS Express software (De Novo, www.
denovosoftware.com). To detect the presence of intracellular chemokine
receptors, cells were fixed in 4% paraformaldehyde in PBS for 10 min
andwashed in staining buffer (300 × g, 5 min, 4 ° C) before being perme-
abilized with Fix/Perm buffer (eBioscience, California, USA) for 30 min at
4 °C in the dark. This solution was removed and the permeabilized cells
were then stained for the intracytoplasmic expression of chemokine re-
ceptors using the antibodies listed above.

Gene expression profiling

RNA extractions
Total RNA was extracted at passages 4–6 from human bmMSCs,

pMSCs and USSCs, using 4 separate donors for each. RNAwas extracted
using a Qiagen RNeasy kit (www.qiagen.com). All RNA preparations
were quantified using a Nanodrop spectrophotometer (Thermo Scien-
tific) and quality was accessed using an Agilent 2100 Bioanalyser
(RNA Nano chips). The RNA integrity number ranged between 9.9 and
10, demonstrating high quality starting material.

Sample labeling and scanning
Five hundred nanograms of RNA was amplified using the Ambion

Illumina RNA amplification kit with biotin UTP labeling (Ambion, Inc),
including a 4 h in vitro transcription using T7 RNA polymerase. A total
of 750 ng of cRNA was hybridized to human whole-genome Illumina
Human-Refseq8 v2 BeadChips (Illumina, Inc.). Slides were scanned on
an Illumina Beadstation and bead summarization was performed
ace hpMSC intracellular
display

USSC cell surface
display

USSC intracellular
display

Positive Negative Faint staining
Positive Negative Positive
Negative Negative Negative
Negative Negative Positive
Negative Negative Positive
Negative Negative Positive
Positive Negative Positive
Positive Negative Positive
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http://www.qiagen.com
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using BeadStudio Version 3.1.7 (Illumina, Inc). The microarray data are
available on the ArrayExpress database (www.ebi.ac.uk/arrayexpress)
under accession number E-TABM-880. Additionally, the data have
been integrated into a public portal, Stemformatics [5]. Here all the mi-
croarray data can be visualized and compared to 100+ other stem cell
datasets (http://www.stemformatics.org).

Data normalization and filtering
Data were exported from BeadStudio with no additional processing,

and imported to R/BioConductor using the readBead function from the
BeadExplorer package. Background adjustment and quantile normaliza-
tion was performed using function: bg.adjust and normalize.quantiles.
Genes were initially filtered using Illumina® detection p-value. A
gene/probe was included in QC assessment if it had a detection p-
value ≥ 0.99 all four donor samples within the tissue source.

Results

Cell surface antigen phenotyping

Based on a standard panel of MSC-descriptive antibodies, all the
lines were virtually identical. All expressed CD29, CD44, CD49d,
CD49e, CD73, CD90, CD105, CD146, CD49e and CD166 (Table 1). All
three cell populations were negative for Stro-1, CD45, CD34, CD50,
CD106, and the pluripotency markers SSEA-4, TRA-1-60 and TRA-1-81
(Table 1).

Chemokine receptor display

The surface and intracellular chemokine displays of bmMSCs and
pMSCs were very similar. USSCs differed from bmMSCs and pMSCs by
showing positive staining for the presence of intracellular CCR8,
CCR10 and CCR11 (Table 2).
Fig. 1.Mesodermal differentiation byMSCs from different sources. Left column: undifferentiate
with DAPI.Middle column: calcium-richmatrix produced by osteoblasts is stainedwith Alizarin
to bottom: MSCs sourced from term placenta (pMSCs), cord blood (USSCs) and bone marrow
Mesodermal differentiation assays

Typical MSC morphology was confirmed in culture (Fig. 1), and the
mesodermal differentiation potential of each of the three cell popu-
lations was assessed in vitro to determine their multipotency ability.
This was analyzed according to the cells' ability to differentiate into
osteocytes and adipocytes. All three undifferentiated populations
showed marked ability to differentiate to the osteogenic lineage.
bmMSCs showed stronger differentiation to the adipogenic pathway
that pMSCs and USSCs, each of which showed only a slight degree of ad-
ipogenesis (Fig. 1).

Gene expression quality

Normalization reduced the between array variation (Fig. 2). Princi-
ple component analysis was performed to demonstrate the difference
between the MSC sources and the reproducibility of the replicate
donors. When plotting on the first two components, the samples clus-
tered based on their tissue source, but some donor variation was appar-
ent (Fig. 2a). All replicates were tightly clustered except for one USSC
sample (Chip ID: 4294077038_D; Sample ID: USSC4). However, this
sample was still highly correlated to the other USSC donors (Average
Pearson of 0.89) compared to 0.95 for the bmMSCs and pMSCs. When
plotting components two and three the samples clustered based on
their tissue source (Fig. 2b).
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