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1. Introduction 

The human placenta is a fetomaternal organ, consisting of both fetal (amnion and chorion) 
and maternal (decidua) tissues (Parolini et al., 2008). This complex organ begins to develop 
within a few days after fertilisation and is fundamental to the development and survival of 
the fetus throughout gestation. The placenta also acts as the lung, kidney and digestive 
system for the growing fetus and protects the fetus from infection throughout development 
(Parolini et al., 2008).  

The placenta is of interest to stem cell biologists since it is rich in stem cells and their 

progenitors. A stem cell is defined as a cell that has the ability to self renew and that can 

differentiate to progeny (daughter cells) of one or more of the germ layers. Stem cells are 

classified as either totipotent, pluripotent or multipotent. The most primitive stem cell, with 

the greatest ability to differentiate, is the totipotent cell of the zygote or first blastomere 

(Mitalipov and Wolf, 2009). This cell occurs from the first division of the zygote and has the 

ability to form an entire organism. Once these totipotent cells begin to divide, they give rise to 

the embryo and placenta. At the 32-cell stage of the embryo, known as the morula, the cells 

have lost their totipotency and are pluripotent (Mitalipov and Wolf, 2009, Witkowska-Zimny 

and Wrobel, 2011). These pluripotent cells contribute to all three germ layers in the developing 

embryo, the endoderm, mesoderm and ectoderm. Stem cells with limited differentiation ability 

are known as multipotent stem cells and can differentiate into a number of cell types within 

the same germ layer. Multipotent stem cells are committed to a particular organ or tissue and 

are the most mature stem cell type (Witkowska-Zimny and Wrobel, 2011). 

1.1 Types of stem cells 

1.1.1 Pluripotent stem cells 

Embryonic stem (ES) cells derived from the inner cell mass of the very early embryo, are 
capable of giving rise to all three germ layers, and are pluripotent stem cells. Induced 
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pluripotent stem cells (iPS) have many characteristics in common with ES, but are derived 
by re-programming adult stromal cells (Mitalipov and Wolf, 2009). As their name implies, 
they too are pluripotent and both types can divide indefinitely, and have the potential to 
develop benign teratomas consisting of tissues of all three germ layers. Regardless of this 
potential complication, neural cells differentiated from human ES cells are already in clinical 
trial (www.geron.com). The differentiated progeny of both ES and iPS cells (for example, 
neurons, cardiomyocytes,  hepatocytes) are likely to be rejected by the immune system of an 
allogeneic recipient and the use of such progeny is likely to require administration of 
immune suppressive agents after their administration to prevent their immune-mediated 
rejection. Additionally, there are a number of ethical concerns particularly with the use of ES 
cells because of the inevitable destruction of the human embryo in the generation of ES cells. 
This concern does not apply to human iPS cells which can be generated from any postnatal 
human tissue, including those that are routinely disposed of, such as term placenta after safe 
delivery of the baby.  

1.2 Multipotent stem cells 

1.2.1 Haematopoietic stem cells  

The best known example of a multipotent stem cell is the haematopoietic stem cell derived 
from the bone marrow, umbilical cord blood or mobilised peripheral blood. Less well-
known is the fact that the placenta is an important source of HSC, at least during mid-
gestation in the mouse (Gekas et al., 2008, Gekas et al., 2010). Haematopoietic stem cells 
(HSC) are the source of all blood cell types and continuously replenish the haematopoietic 
and immune systems throughout life. They are the best characterised adult stem cell and are 
the only stem or progenitor cells in routine clinical use today (Appelbaum, 2007). The 
transplantation of HSC is a potentially curative therapy for immunodeficiencies such as 
severe combined immune deficiencies, haematological malignancies such as leukaemia, 
myeloma, and myelodysplasia, and bone marrow failure syndromes such as severe aplastic 
anaemia. HSC transplantation (HSCT) was pioneered in the 1950s using bone marrow (BM) 
as the source of HSC, with the first successful allogeneic transplant performed in 1968. 
Mobilised peripheral blood (mPB) HSC, collected by apheresis, are now the most commonly 
used source of stem cells for HSC transplantation. However, both of these sources are 
restricted by the availability of a suitable human leukocyte antigen- (HLA-) matched related 
or unrelated living donor. The use of BM- or mPB- HSC from a matched unrelated donor or 
a partially mismatched family member has a higher incidence of potentially fatal, graft-
versus-host disease (GVHD), a condition that occurs due to immune attack by donor 
leukocytes on recipient tissues. Umbilical cord blood (UCB) is now recognised as a 
promising alternative tissue source of HSC and it has some advantages over conventional 
sources since it is readily available and easy to collect. Most importantly, UCB can be used 
in transplants with less than optimal donor-recipient HLA-matching, thus providing 
broader access compared to BM- and mPB- HSC. The isolation and clinical applications of 
HSC derived from UCB will be discussed later in this chapter. 

1.2.2 Mesenchymal stem cells 

Another multipotent stem cell was discovered within the bone marrow by Friendenstein 
more than forty years ago (Friedenstein et al., 1976). These cells are now commonly known 
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as mesenchymal stem/stromal cells (MSC) and are cells that give rise to tissues of the 
mesodermal lineage, including bone, cartilage, muscle, tendons and adipose tissue. Their 
many advantages include their relative ease of isolation, expansion potential, stable 
phenotype and compatibility with different delivery methods and formulations (reviewed 
in “Therapeutic applications of mesenchymal stromal cells” (Brooke et al., 2007)).  

It is known that traditionally derived bone marrow (bm) MSC are a rare cell population 
(~0.001% of BM mononuclear cells) in vivo, resulting in a low MSC yield when isolated. 
Hence, ex vivo expansion is required to gain sufficient numbers for clinical applications. In 
general, MSC are isolated using a density gradient or cell lysis, after which the mononuclear 
cells are cultured in basal medium such as Dulbecco’s modified Eagle’s medium and 10 % - 
20 % fetal calf serum (FCS) (Pittenger et al., 1999, Mcbride et al., 2003, Lodie et al., 2002). Cells 
are subsequently maintained in culture for several days during which contaminating, non-
adherent haematopoietic cells such as macrophages are depleted. Human MSC have a  
characteristic (but not unique) cell surface phenotype of CD90+, CD105+, CD73+, CD44+ , 
HLA I+, CD45-, CD34- CD11b-, HLA II- (Pittenger et al., 1999, Javazon et al., 2003, Peister et 
al., 2004). MSC are unique amongst nucleated mammalian cells in that they stimulate little 
allogeneic reactivity when administered to MHC-unmatched adult immune competent 
recipients, perhaps due to their lack, at least in the human, of expression of co-stimulatory 
cell surface molecules such as CD80 and CD86 (Weiss et al., 2008, Wang et al., 2009). 
Furthermore, they are actively suppressive of T cell, dendritic cell and B cell function (Weiss 
et al., 2008, Wang et al., 2009, Jiang et al., 2005) and this is presumably linked to their ability 
to down-modulate exuberant inflammation, which can subsequently result in pathological 
remodeling and excessive fibrosis. 

It has been proposed that current tissue culture methods used to expand MSC reduce 
multipotency and result in lower migratory/engraftment capacity of the expanded MSC. It 
has also been shown that humans and animals show a decreased rate of production of bone 
marrow mesenchymal stem and progenitor cells with increasing age (Caplan, 1994). Several 
studies have provided evidence of a strong correlation between age and the proliferative 
potential exhibited by MSC in vitro (Stenderup et al., 2003, Bergman et al., 1996, D'ippolito et 
al., 1999). Thus, the progenitor pool may be depleted following extensive proliferation. 
Consequently, this results in a reduced ability to ensure regeneration after injury or disease 
depending on the age of the MSC (Ringe et al., 2002). Such a decline in the quality of the cells 
is suboptimal for therapeutic application. 

For these reasons, novel sources of MSC are now being investigated for clinical use in 
diseases in which the regenerative and immunomodulatory functions of MSC may be useful 
(Barlow et al., 2008b, Chang et al., 2006a, Jones et al., 2007, Brooke et al., 2009). A readily 
available and younger source that can be obtained by a non-invasive procedure, and which 
yields large numbers of MSC for ex vivo expansion would be an ideal alternative to adult 
bone marrow.  

MSC derived from tissues normally disposed of, such as the term placenta and other 
gestational tissues that are fetal derived (In 'T Anker et al., 2004, Yen et al., 2005, Bailo et al., 
2004, Wulf et al., 2004, De Coppi et al., 2007) have been investigated to see if they fulfill these 
criteria. This chapter will describe various gestational tissue sources for human MSC as 
alternatives to bone marrow, the isolation of MSC from these sources and their application 
in the clinic.   
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2. The human term placenta 

The human term placenta represents an attractive source of MSC due to its ready 

availability, its easy access without invasive procedures, and lack of the ethical issues that 

surround the use of embryonic stem cells. The placenta as a whole, represents both fetal 

(amnion and chorion) and maternal (decidua) components (Figure 1) and is vital for the 

development and survival of the fetus throughout gestation.  

 

Fig. 1. A schematic diagram showing the developed human placenta. The diagram was 
adapted from the Merck Manual website. http://www.merckmanuals.com 

Our group has isolated MSC from the whole placenta (amnion, chorion and decidua). 

Whole term placentas were collected from consenting healthy volunteer donors scheduled 

for elective Caesarean sections to minimise microbial contamination. Briefly, the whole 

placenta was cut into approximately 2 cm2 pieces followed by enzymatic digestion using 

Collagenase Type 1 and DNase I. Ficoll density gradient or cell lysis was performed and 

cells placed in culture for ex vivo expansion. We found that human placental (hp) MSC 

differed to human bone marrow (hbm) MSC in proliferative capacity, with hbmMSC 

proliferating more slowly than hpMSC. Human pMSC were shown to be safe when 

administered into healthy mice at the same or higher dose than those currently used in 

clinical trials with hbmMSC (Barlow et al., 2008a). Importantly, we also showed that the 

immune suppressive capacity of hpMSC to decrease T cell alloreactivity in mixed 

lymphocyte reaction (MLR) was equivalent to that of hbmMSC (Jones et al., 2007). This thus 

suggested that human placenta is a potentially viable alternative source for human MSC and 

with this knowledge we are currently investigating placental-derived MSC in several 

human clinical trials (Brooke et al., 2009).  
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3. Other gestational tissue sources of MSC  

MSC derived from whole term placenta are of maternal origin (Barlow et al., 2008a). Over 

the past decade much has been discovered about MSC in the developing fetal environment. 

Fetally-derived MSC are theoretically attractive because they generally have not been 

exposed to viruses and toxins, may contain less genetic abnormalities than adult tissue-

derived MSC, and may have greater proliferative capacity and a greater retention of 

“stemness” memory. It has been suggested that they have properties intermediate between 

embryonic and adult stem cells (Guillot et al., 2006). Thus, they may be a superior MSC 

source for clinical trials than the traditional source which is adult bone marrow.  

This section will  focus on the isolation of MSC from amniotic fluid (Mareschi et al., 2009, 

Nadri and Soleimani, 2007, Roubelakis et al., 2007), the amniotic membrane (Soncini et al., 

2007, Portmann-Lanz et al., 2006, Diaz-Prado et al., 2010), the chorion (chorion laeve and 

chorionic villi) (Soncini et al., 2007, Portmann-Lanz et al., 2006, Igura et al., 2004, Poloni et al., 

2008), the decidua (Macias et al., 2010, Aghajanova et al., 2010), umbilical cord/Wharton’s 

jelly (Mitchell et al., 2003, Gonzalez et al., 2010, Reinisch et al., 2007, Petsa et al., 2009) and 

umbilical cord blood (Mareschi et al., 2001, Bieback et al., 2004, Romanov et al., 2003). This 

section will also discuss the isolation of haematopoietic stem cells from the umbilical cord 

blood and the application of these cells. 

3.1 Amniotic fluid 

Amniotic fluid helps protect the fetus throughout gestation. This unique environment 

allows the fetus to move freely within the uterus and protects the fetus from mechanical 

injury.  

Amniocentesis is a diagnostic procedure that samples amniotic fluid from 14 weeks 
gestation until birth. This can be used to isolate amniotic fluid MSC (AF-MSC) for genetic 
screening purposes. It has been found that amniotic fluid contains a heterogeneous 
population of many cells including a large portion of epithelioid E-type cells, amniotic 
fluid-specific AF-type cells and fibroblast F-type cells (Witkowska-Zimny and Wrobel, 
2011, Prusa and Hengstschlager, 2002). Although many cell types exist within the 
amniotic fluid, MSC have been found. It has been estimated that approximately 1% of 
cells in culture obtained from human amniocentesis are MSC. Only a few studies have 
successfully isolated single cell-derived MSC clones from amniotic fluid (Tsai et al., 2004, 
De Coppi et al., 2007, Antonucci et al., 2009, Phermthai et al., 2010, Witkowska-Zimny and 
Wrobel, 2011). 

Amniotic fluid derived-MSC show typical MSC characteristics as well as expression of 

OCT4, a primitive stem cell marker (Roubelakis et al., 2007). This suggests these cells may be 

more primitive than adult BM-MSC. Moreover, it has also been reported these cells have a 

high proliferative potential with over 250 population doublings without doubling time 

changes and can be differentiated into endodermal and ectodermal lineages in vitro. 

Although these properties seem theoretically more advantageous, it is debatable whether 

amniotic fluid is a practical and reliable source for generating MSC on a regular basis for 

clinical trials (Tsai et al., 2004, De Coppi et al., 2007, Antonucci et al., 2009, Phermthai et al., 

2010, Witkowska-Zimny and Wrobel, 2011). 
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3.2 The amniotic membrane 

The amnion is derived from the fetus and is the innermost membrane of the placenta. The 
amniotic membrane encases the amniotic fluid and fetus, and is highly flexible as it expands 
throughout gestation. It is a thin, avascular membrane and contains an epithelial cell layer 
and mesenchymal stromal cell layer. The amniotic epithelial cell layer is a single layer of flat, 
cuboidal and columnar cells in close contact with the amniotic fluid. The amnion epithelial 
cells are attached to a distinct basal lamina that is connected to the amniotic mesoderm 
(Blackburn, 2003, Parolini et al., 2008). The amniotic mesoderm layer consists of 
macrophages and fibroblast-like mesenchymal cells (Parolini et al., 2008). It is from this layer 
of the amniotic membrane that amniotic MSC (AMSC) can be isolated.  

To isolate fetal-derived MSC-like cells from the amniotic membrane, enzymatic digestion is 

used. The amniotic membrane can be peeled from the chorionic membrane (Figure 1), washed 

until blood has been removed (until it appears almost translucent) and cut into smaller pieces. 

It is digested first using trypsin to remove the epithelial layer of cells and second, 

enzymatically digested to release the stromal cells. A ficoll density gradient or cell lysis can be 

performed and the mononuclear cells placed in culture. Similar to AF-MSC, these cells are 

fetally derived and exhibit similar characteristics to BM-MSC (Soncini et al., 2007).  

3.3 The chorion  

The human chorion consists of the chorionic laeve (membrane), chorionic plate and 
chorionic villi. The chorionic laeve is the outer fetal membrane composed of layers of 
polygonal cells consisting of both mesoderm and trophoblast regions (Blackburn, 2003). The 
chorionic laeve is closely associated but not attached to the amniotic membrane and gives 
rise to the chorionic plate and villi. During development, the chorionic villi grow outwards 
into the endometrium to anchor at the decidua basalis (see below). This phenomenon occurs 
through dividing cytotrophoblasts and syncytiotrophoblasts and ultimately gives rise to a 
network of villi called the chorionic villi. Chorionic villi develop from the chorionic plate 
and stretch outwards (like finger-like projections) and attach to the decidua basalis to 
anchor the placenta in the uterus. The mesenchymal cells form a connective-tissue like 
support for the blood vessels growing into the villi and can also be found within this region.  

To isolate fetal-derived MSC-like cells from the chorionic laeve, enzymatic digestion is 

suggested. The chorionic laeve is peeled from the amniotic membrane and cut at the chorionic 

plate. Similar to the amniotic membrane, the chorionic laeve is washed until blood clots have 

been removed and cut into smaller pieces. It is then digested using collagenase and DNase to 

release the stromal cells. A ficoll density gradient or cell lysis can be performed and the 

mononuclear cells placed in culture. Despite the chorionic laeve arising from the fetus, we 

have found from FISH and genotyping analyses from term chorionic membranes, that 

maternal cells are present in the cultured MSC population. It is predicted that this is a result of 

the decidua capularis (maternal derived) fusing to the chorionic leave early in pregnancy. 

Hence, we suggest that the chorionic laeve is not an optimal source for fetally derived MSC.      

3.4 Chorionic villi 

The chorionic villi are fetally derived and intercalates with the maternal decidua. It is 

responsible for the exchange of nutrients from the mother to the fetus. The chorionic villi are 
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highly vascularised and consist of syncytiotrophoblasts, cytotrophoblasts and mesenchymal 

stromal cells. To isolate MSC, a diagnostic test, chorionic villus sampling, can be performed. 

This procedure is invasive to both mother and baby as it is performed in utero. Therefore, a 

less invasive method is to collect chorionic villi samples after birth (from term placenta). 

Due to the close interaction with maternal decidua, it is suggested that a dissecting 

microscope is used to mechanically separate fetal villi from maternal decidua. Despite these 

efforts, it can be a relatively ineffective method for isolating fetally derived cells with 

maternal cell contamination rapidly occurring in the cultured cell population. Hence, we do 

not recommend using this tissue source for isolating fetally derived MSC. 

3.5 The decidua 

After implantation of the blastocyst (~6-10 days post fertilisation), regional specialisation 

occurs within the endometrium to accommodate the developing embryo and placenta. The 

maternal decidua arises from this and forms 3 layers, decidua capularis, decidua basalis and 

decidua parietalis. The decidua capularis is adjacent to the embryo and fuses to the 

chorionic laeve as the embryo develops. At term this region of the decidua can not be 

distinguished from the chorion laeve. The decidua basalis is located between the 

myometrium and chorionic villi and can be difficult to distinguish. The decidua parietalis 

forms part of the uterine lining and is a better decidual source for isolating maternal MSC 

because it contains few invasive fetal cells (trophoblasts). 

To obtain decidua parietalis, a suction or vacuum curettage of the uterine wall is used once 

the baby has been delivered. This is the most sterile technique but may cause complications 

to the mother such as post-natal uterine bleeding. The tissue is then digested and cells 

placed in culture.  

3.6 Umbilical cord / Wharton’s jelly 

The life line that connects the fetus to the mother is the umbilical cord. The human umbilical 

cord allows vital nutrients and oxygen to be exchanged from the mother to the fetus. Within 

the umbilical cord are two arteries and one vein; these are surrounded by a gelatinous 

mucoid connective tissue known as Wharton’s jelly. These tissues are derived from the 

extra-embryonic mesoderm, derived from the fetus (Witkowska-Zimny and Wrobel, 2011). 

The role of Wharton’s jelly is to protect and insulate the umbilical cord vessels, and is 

composed of myofibroblast-like stromal cells, collagen fibers and proteoglycans. In 2003, 

primitive stem cell types were found to reside within the Wharton’s jelly of the umbilical 

cord (Mitchell et al., 2003). These cells are referred to as umbilical cord mesenchymal 

stromal/stem cells (UC-MSC). 

There are several methods for the isolation of MSC from the umbilical cord. As with the 

isolation of whole marrow, the isolation of MSC from the umbilical cord includes enzymatic 

digestion of the tissue, followed by either a density gradient centrifugation or cell lysis. 

These cells can be isolated in large numbers, approximately 1.5x 106 cells/cm of the 

umbilical cord (Weiss et al., 2005). It has been observed that UC-MSC proliferate faster than 

bmMSC and may be cultured for more than 80 population doublings with no indication of 

senescence or changes in morphology (Mitchell et al., 2003).  
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3.7 Umbilical cord blood 

The umbilical cord blood is known as a rich source for both MSC and HSC. MSC within the 
cord blood have been referred to as unrestricted somatic stem cells (USSC). However, there 
has been controversy over the efficiency and yield of USSC within the cord blood. It is 
proposed that possible explanations for the controversy involve the variability between 
donors, the isolation technique, and the use of different culture conditions by independent 
studies (Da Silva Meirelles et al., 2008). Though the isolation of USSC from umbilical cord 
blood can be difficult, there have been some recent breakthroughs in attempts to optimise 
the isolation process. Flynn and colleagues (Bieback et al., 2004, Chang et al., 2006b, Flynn et 
al., 2007, Kern et al., 2006, Sparrow et al., 2002) found the isolation process to be most 
efficient when the umbilical vein was cannulated and blood collected into a sterile bag 
containing either citrate phosphate dextrose or citrate-based anti-coagulant [0.6% acid citrate 
dextrose formula-A acid anti-coagulant and BSA (0.5% fraction V)], called ACD-A buffer 
(Flynn et al., 2007, Mcguckin et al., 2003). Once the umbilical cord blood has been collected it 
should be processed within 15 hours as USSC yield can decrease dramatically over time 
(Bieback et al., 2004). Cord blood is processed using a ficoll density gradient and the 
mononuclear cells collected and placed in culture.  

3.8 Isolation of HSC from the cord blood 

The first successful UCB-derived HSCT was performed in 1989 by Gluckman and 
colleagues to treat a six year-old child with Fanconi anaemia (Gluckman et al., 1989). Since 
then, UCB has become recognised as a promising alternative HSC source for HSCT. Some 
advantages that UCB has over bone marrow or mobilised peripheral blood from living 
donors is that it is readily available and available from cord blood banks throughout the 
world (Bradley and Cairo, 2005). Most importantly, UCB can be used in transplants with 
less than optimal donor-recipient HLA-matching, providing a broader application 
compared to BM and mPB. The reason behind this versatility is the immunologically 
naive nature of UCB which stems from its ontogenetic primitiveness compared to BM and 
mPB (Haylock and Nilsson, 2007).  

UCB-derived HSC, and indeed all human HSC, are classically identified by cell surface 
expression of CD34, a cell surface glycoprotein (Andrews et al., 1992, Okuno et al., 2002, 
Osawa et al., 1996). However, CD34+ populations still contain a large population of 
committed progenitor cells with less than 1% of this population representing truly primitive 
HSC, as identified in transplantation assays (Wognum et al., 2003). Thus, the CD34 marker is 
often used in combination with other markers such as Lin-, CD38- and CD90+ (Park et al., 
2008). In addition to these cell surface markers, other techniques have been developed to 
identify populations enriched for HSC based on some of the functional characteristics of 
these cells. These include dye exclusion due to efflux pumps of the fluorescent dyes 
Hoechst-33342 (Ho) and Rhodamine-123 (Rho) (Bertoncello et al., 1988, Bertoncello and 
Williams, 2004, Goodell et al., 1996, Li and Johnson, 1995, Schroeder, 2010, Wognum et al., 
2003). In the case of Ho, HSC actively pump the dye out of the cell and therefore can be 
fluorescently selected as Ho-/low (also known as side-population [SP] cells). Likewise, Rho is 
used to detect the low metabolic activity of HSC and they are identified as Rholow. These 
techniques are used to both enrich and characterise HSC populations. However, the best 
and most accurate test of HSC quality is based on self-renewal potential and the ability to 
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give rise to all cells of the haematopoietic lineage in an in vivo setting. This characteristic is 
assayed by measuring the ability of HSC to repopulate and contribute to haematopoiesis in 
lethally irradiated animals for long periods (usually greater than 3 months in mice).  

While UCB has several advantages over BM and mPB as a HSC source, the application of 
UCB is limited by HSC yield. Consequently, the HSC dose (cells/kilogram) from a single 
cord is low for clinical transplantation. This is particularly evident in the adult setting, 
where multiple cords are often needed to permit a successful transplant. Therefore, there 
has been a strong focus in HSC expansion processes that may increase cell yield prior to 
transfusion.  

4. Preclinical and clinical studies using cord blood HSC 

Various culture methods have been proposed for both HSC expansion and for the 

production of mature cell end-products with clinical utility such as erythrocytes 

(particularly for trauma applications) and neutrophils (for neutropenia in the post-HSCT 

period). Historically, two main approaches have been taken towards achieving these aims.  

1. Using in vitro culture systems supplemented with various combinations of 
haematopoietic growth factors.  

2. Using a specific feeder cell monolayer to provide a supportive microenvironment. 

This section will focus on HSC expansion techniques that use MSC as a supportive feeder 
layer and critique these in both pre-clinical and clinical settings. 

The notion of using MSC to support HSC in culture arises from the HSC niche. Our 
understanding of the HSC niche has dramatically improved in the last three decades since 
Schofield first postulated the idea of a specialised micro-environment where stem cells exist 
(Schofield, 1978). This environment provides HSC with the necessary cues to maintain stem 
cell homeostasis by ensuring quiescence in a healthy state, or proliferation in the case of 
cytopenia or infection. These cues regulate HSC via cytokines, growth factors, extracellular 
matrix proteins, adhesion molecules and cell-cell interactions. Many of these signals are 
provided by the cells that make up the HSC niche, most notably those of the mesenchymal 
lineage. Thus, this innate supportive role characteristic of MSC has provided the basis for 
their use in ex vivo HSC expansion systems. 

The most common source of MSC in MSC-HSC expansion systems is the BM. However, 
MSC have also been shown to be effective when sourced from other tissues including 
human placenta (Zhang et al., 2004), umbilical cord (Bakhshi et al., 2008, Huang et al., 2007, 
Wang et al., 2004) and adipose tissue (Nakao et al., 2010). Recent papers have demonstrated 
that many of the specific cell-cell interactions between HSC and stromal cells are critical and 
may be essential for HSC regulation both in vivo (Steiner et al., 2009) and in vitro (Jing et al., 
2010, Song et al., 2010, Wagner et al., 2008, Wagner et al., 2007, Wein et al., 2010). Indeed, a 
majority of studies have shown that cell-cell contact between HSC and MSC is essential for 
their ex vivo expansion. There is also evidence that the most primitive HSC directly interact 
with stromal cells (Song et al., 2010, Zhang et al., 2006). Although, MSC may provide growth 
factors themselves, one disadvantage of this technique, at least in the human system, is that 
the co-cultures still require additional supplementation with growth factor cocktails 
(Andrade et al., 2010, Da Silva et al., 2005, Mcniece et al., 2004). 
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Clinical trials using co-culture expanded HSC are few in number. The proprietary Replicell 
technology developed by Aastrom Biosciences Inc. was shown to be feasible but not 
definitively effective in enhancing myeloid, erythroid or platelet engraftment in the clinical 
setting (Jaroscak et al., 2003, Pecora et al., 2001). The system uses stromal co-cultures while 
also providing a continuous supply of culture medium containing fetal calf serum, horse 
serum, PIXY321 (a GM-CSF/IL-3 fusion protein), flt3 (FL) and erythropoietin (EPO) (Stiff et 
al., 2000). One of the most comprehensive co-culture clinical trials has recently been initiated 
by the company Mesoblast PTL using a BM-derived multipotent progenitor cell (an MSC-
like cell) product to expand UCB cells. As with clinical trials using cytokine-expanded 
HSC, the study transfused one unmanipulated UCB unit together with one 14-day 
expanded unit. Expansion using this method enhanced neutrophil recovery by 14 days 
and the grafts were shown to elicit less GVHD compared to that of published reports 
using unmanipulated UCB transplants (Mesoblast ASX announcement, 06 Nov 2009, 
www.mesoblast.com) (Kelly et al., 2009). While long-term follow up results are yet to be 
reported, it will be interesting to determine whether the therapeutic value of the 
expanded unit is purely short-term myeloid support, as is the case in the Delaney’s 
cytokine-mediated expansion trial (Delaney et al., 2010), or whether the expanded unit 
also provides durable long-term engraftment. 

5. Manufacturing process of human placental-derived MSC under GMP 
conditions, quality assurance and regulatory considerations  

In this section we discuss the manufacturing processes that are required for using current 

good manufacturing practice (cGMP), quality assurance and regulatory considerations 

when conducting clinical trials with placenta-derived mesenchymal stem cells in Australia. 

We have chosen to utilise term human placental-derived mesenchymal stem/stromal cells 
(hpMSC) for a series of clinical trials. Placentas obtained during elective term Caesarean 
sections were used as our source for hpMSC manufacture in order to minimise the risk of 
microbial contamination, a major concern with ex vivo expansion of cells for therapeutic 
use.   

With no need to MHC-match the donor to the intended recipient, hpMSC from a single 

manufacturing campaign can be utilised in numerous clinical trials and for number of 

patients (Brooke et al., 2009). However, hpMSC manufacture currently represents a complex, 

specialised, time-consuming and labour-intensive exercise (Ilic et al., 2011). At present MSC 

manufacture requires an “open” system due to the multiple steps required for isolation and 

expansion of MSC from placenta.  Although class II safety cabinets or clean rooms can be 

utilised, the extended period of expansion (up to 6 weeks in our process) introduces the risk 

of microbial contamination.  We have utilised extensive in-process and end-product testing 

prior for release of product for clinical use to minimise these risks (Ilic et al., 2011). 

The Code of Good Manufacturing Practice (cGMP) standard (or its close equivalent) is 

applied across the entirety of the hpMSC manufacturing process, including acquisition of 

the starting cell population (placental tissue), isolation of cells, processing, storage and 

transport. A Quality Management System (QMS) is required to provide support for the 

manufacturing process based on the International Organization for Standardization (ISO) 

standard requirements. 
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The new Biologicals Framework was established recently by the Therapeutic Goods 
Administration (TGA) in Australia (http://www.tga.gov.au/industry/btb.htm ). Its 
purpose is to improve the regulation of human tissue and cellular therapies and provide 
improved clarity by applying different levels of pre-market regulation to biological products 
based on the risks associated with the use of each product. According to the Biologicals 
Framework, hpMSC are categorised as Class 3 products.  As a result, any trial utilising 
hpMSC (Class 3 product) can be conducted under the TGA’s Clinical Trial Notification 
(CTN) Scheme.  The CTN scheme is designed to combine rapid approval of clinical trial 
protocols with ongoing monitoring and supervision by a Human Research Ethics 
Committee (HREC) acting in accordance with nationally agreed guidelines developed by 
the Australian National Health and Medical Research Council (NHMRC). It is important to 
note that the TGA does not review any data relating to the trial under this scheme. The 
Human Research Ethics Committee (HREC) reviewing a new clinical trial protocol utilising 
hpMSC must have sufficient experience among committee members in order to effectively 
review the protocol ensuring that the proposed trial has scientific validity, and that 
participants’ rights and well-being are protected according to the Australian National 
Health and Medical Research Council’s National Statement on Ethical Conduct in Human 
Research 2007, the Declaration of Helsinki and International Conference on Harmonisation 
Good Clinical Practice ICH GCP(CPMCP/ICH/135/95). 

Along with the study protocol, a Participant Information Sheet and Consent Form (PISCF) 
and other supporting documents including an Investigators Brochure is submitted for 
review by the HREC and the TGA, and is used by study personnel to facilitate their 
understanding of the key features of the protocol, in particular, the dosing and methods of 
administration of the hpMSC. 

5.1 Pre-manufacturing and quality management  

All hpMSC donors are subject to screening requirements according to the AusCord 
(Australian National Network of Umbilical Cord Blood Banks and Cord Blood Collection 
Centres) Guide to Selection of Mothers and Cord Blood Donors.  Prior to the collection of 
the placenta, the donating mother undergoes screening serology for infectious disease 
markers and completes an in-depth medical questionnaire (as per AusCord Guidelines).  
The same process is repeated at 180 days after placental donation and information is sought 
about the health of the baby to identify if any medical conditions have been identified that 
may exclude the donated placenta.  

An operational unit provides support to advanced clinical research based upon high level 
cell manipulation, such as ex vivo expansion of hpMSC, through its Quality Management 
System. Our Quality Management System comprises the organisational structure, 
procedures, processes and resources that control quality activities within the operational 
unit. It is defined in a series of policy statements in the Quality Manual and it is 
implemented through Standard Operating Procedures. Standard Operating Procedures 
(SOPs) are used to ensure that work having an effect on service and product quality, either 
directly or indirectly, is carried out in a consistent and satisfactory manner. Clear and 
effective procedures are developed and maintained by relevant staff. Procedures are 
regularly reviewed for accuracy, relevance and consistency with the policies, requirements 
of the relevant standards, guidelines and best practices.  
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5.2 Manufacturing  

The placenta is obtained from healthy mothers undergoing elective Caesarean sections with 
their full informed consent prior to delivery. The placenta is subsequently double bagged, 
placed in a cool box and transferred to our manufacturing facility for processing. Our 
protocol for the isolation of MSC from placenta utilises a GMP grade collagenase-based 
digestion of tissue which has been dissected and washed to remove blood before isolation of 
cells.  After digestion, large particulate matter is removed by low speed centrifugation and 
cell suspensions are collected and filtered into fresh tubes using 70 µm filters.  The cells are 
then pelleted by centrifugation, resuspended and erythrocytes are subjected to rapid lysis 
with water. The cells are washed with Hank’s Balanced Salt Solution (HBSS) and the final 
cell pellet is resuspended in Dulbecco’s Modified Eagle Medium (DMEM-LG), 25% fetal calf 
serum (FCS), and 50 µg/ml gentamycin. Cells are initially seeded into eight T175 cm2 tissue 
culture flasks and cultured in a humidified incubator at 37°C, 5% CO2. A scheme of the 
production schedule is shown in Figure 2. 

 

Fig. 2. Human placenta-derived MSC manufacturing flow diagram. D, day of 
manufacturing process 

5.3 Release criteria 

Prior to placenta donation, the mother must fulfil the criteria in the health questionnaire and 
undergo screening serology testing for infectious disease markers, the results of which must 
be negative. At day 180, a health questionnaire for both mother and baby are performed and 
both must be satisfactory. The mother’s infectious disease markers are repeated and, again, 
must be negative (Table 1). In addition, for the cryopreserved cells to be available for 
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subsequent use in a clinical trial, the following release criteria must be met:  MSC passages 
(P) zero to five (P0-P5) must be sterile after 14 days microbiology culture; the MSC must be 
greater than 70% viable (using Trypan Blue exclusion); MSC purity is determined by flow 
cytometry, and must be >85% CD73+, >85% CD105+, and <1% CD45+. A normal karyotype 
analysis must be demonstrated on MSC from P2 - P5; Gram stain (P2-P5) must be negative; 
mycoplasma testing (P2-P5) must be negative, and endotoxin testing (P2- P5) must show a 
level of < 2 EU/ml (Table 1).   

 

 * For infectious disease markers.  ** Donor/mother and the baby follow-up.  N/A = Not applicable.  P 
= Passage.  

Table 1. Human placenta-derived MSC Quality Control Testing used by the Stem Cell 
Biology, Regenerative Medicine and Stem Cell-based anti-Cancer Therapeutics Group, 
MHS/MMRI, Brisbane, Australia. 

6. Placental-derived MSC in the clinic 

6.1 Application in clinical trials  

Clinical trials of MSC therapy in humans have shown promising results in several clinical 
settings. Many patients have now received MSC by intravenous infusion for multiple 
clinical indications world-wide. A search on ClinicalTrails.gov listed a total of 192 MSC 
clinical studies in July 2011, including 171 studies with their status indicated. Clinical 
diseases treated to date have included acute graft-versus-host disease (GVHD) following 
allogeneic HSC transplantation, Crohn’s disease, insulin-dependent diabetes mellitus and 
renal transplantation (Kebriaei and Robinson, 2011). The tissue repair capability of MSC is 
also being investigated in clinical trials for cardiac muscle repair after acute myocardial 
infarction, congenital bone disorders such as osteogenesis imperfecta, severe bone fractures, 
meniscal tears and liver repair in patients with cirrhosis. Studies have also been carried out 
using MSC to treat various metabolic disorders, ischemic stroke and neurological disorders.  
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Currently, four clinical trials using bone marrow-derived MSC are completed or in progress 

in Australia. Our group was the first to conduct clinical trials with human placenta-derived 

MSC. We are currently conducting three clinical trials using hpMSC and have four 

additional clinical trials in preparation. 

6.2 Phase I clinical trial of hpMSC co-transplanted with umbilical cord blood 
transplants 

In 2007, we submitted a HREC application for our first Phase I clinical trial, which was a 

multicentre, open label dose-escalation study of volunteer unrelated, MHC-unmatched 

placenta-derived MSC in recipients of unrelated umbilical cord blood HSC transplants. In 

this setting it was hypothesised that the transplanted MSC would support engraftment of 

HSC and reduce the frequency and severity of graft-versus-host disease (GVHD).  The total 

time from submission of the application until final approval was 1 year. During this time, a 

request was made by our institutional HREC for an external audit to be conducted on the 

manufacturing processes outlined in the study protocol. This was performed by the 

Australian Red Cross Blood Service (ARCBS) and a two-way clinical trial agreement was 

established between the two participating hospitals. This agreement included an 

appropriate indemnification for each of the participating sites and ensured reporting of any 

adverse events related to the administration of the hpMSC.   

6.2.1 Course of clinical trial 

One day after the completion of pre-transplant myeloablative conditioning with 
cyclophosphamide and total body irradiation, a 20 year old Caucasian male with acute 
myeloid leukemia in second remission was given 1.20 x 108 human placental MSC (1 x 
106/kg) intravenously. These were suspended in 30 ml and infused over 7 min using a 200 
µm in-line filter. No adverse events were noted.  Five hours later the patient received two 
cord blood units. Post-thaw, the total nucleated cell dose from the two cord blood units was 
3.6 x 107/kg and the total CD34+ cell dose was 1.2 x 105/kg. The MSC were MHC-
unmatched with both the recipient and the two cord units. The MSC donor serology tests 
were negative for cytomegalovirus (CMV), as were the two cord blood donors (Brooke et al., 
2009).  

6.2.2 Post-transplant clinical course 

Cyclosporine and mycophenylate mofetil were used as prophylaxis for graft-versus-host 

diseases (GVHD). The patient developed Strepotococcus viridans septicemia on day 7 post-

transplant and was treated accordingly. Subsequently, the patient developed a skin rash on 

day 14 and the skin biopsy was consistent with acute GVHD and resolved with treatment. 

Neutrophil engraftment with an absolute neutrophil count > 500/μl occurred at day 38. 

CMV reactivation occurred at day 45 and the patient was treated with ganciclovir. However, 

at day 52 staphylococcal bacteremia occurred with the subsequent development of fever, 

fluid overload, respiratory distress and hypoxia. On day 68 the patient died of respiratory 

failure, thought due to interstitial pneumonitis. The patient did not become platelet-

independent by the time of his death and the treating physicians did not consider any of the 

post-transplant complications to be related to the MSC infusion (Brooke et al., 2009).  
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6.2.3 Lessons learned from this trial 

One patient was enrolled in this study and later died from pneumonitis related to CMV 
reactivation. It is important to note that the donor of the hpMSC was CMV-negative prior to 
the collection of the placenta and again at the follow-up screening period. This particular 
study did not yield significant clinical results. Unfortunately, this particular study has now 
been closed as umbilical cord blood transplants are no longer being performed in adults at 
the specific hospitals involved.  

However, it did highlight some of the impracticalities in incorporating the manufacturing 
protocol within a given clinical trial protocol.  As a result, a new manufacturing protocol 
was established in 2009.  This manufacturing protocol allowed us to continue manufacturing 
hpMSC independent of a clinical trial and therefore established a master cell bank of 
hpMSC.  This protocol was approved by our institutional HREC under the provision that 
any clinical trial utilising the hpMSC as the investigational product was to be reviewed by 
the Human Research Ethics Committee.      

6.3 Phase I clinical trial of hpMSC in patients with idiopathic pulmonary fibrosis   

In 2010 we initiated a phase I study to evaluate the potential role of placenta-derived MSC in 

the treatment of idiopathic pulmonary fibrosis (IPF). MSC represent an attractive and novel 

therapeutic agent for lung diseases, as the lungs are the first site in which MSC lodge after 

intravenous injection (Figure 3). IPF is a relatively common chronic, fibrosing lung disease 

of unknown aetiology that results in severe, refractory and progressive breathlessness. MSC 

have theoretical benefits to patients with IPF because of their immunomodulatory capacity 

to decrease fibrosis. It is possible that any therapeutic role for MSC in this disease will be 

mediated by their ability to remodel extracellular matrix, or their ability to suppress the 

immune response through contact-dependent and soluble mediators, or both. 

 

Fig. 3. In vivo luciferase activity of MSC after intravenous injection. Images were taken 38 
min after injection with an exposure period of 10  min. Mouse 1: No cells administered 
(negative control), Mouse 2: 1 x 106 MSC transgenic for luciferase. 

6.3.1 Course of clinical trial and monitoring  

Our hpMSC were transported in a dry shipper to the participating hospital where they were 

thawed and infused intravenously. This is another Phase I study (since we regard hpMSC as 

a “first-in-man” reagent that need to be investigated in a Phase I trial for each different 
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patient population) to assess the safety of hpMSC in IPF patients, as well as to perform an 

MSC dose-escalation study, with the approval of the Data Safety Monitoring Committee to 

initiate the second dose-cohort. The first 4 patients receive 1 x 106 MSC/kg and the second 4 

patients receive 2 x 106 MSC/kg. To date 3 patients have been infused in Cohort 1 without 

any adverse events due to the hpMSC. Specifically, no serious adverse events relating to 

infusional toxicity or ectopic tissue formation have been reported. Instructions for 

monitoring for infusional toxicity are represented in Table 2. Infusional toxicity is defined as 

any one of the criteria observed in Table 2 at any time within the 4-hr post-infusion period. 

 

Table 2. Monitoring for infusional toxicity 

6.3.2 Lessons learned from this trial 

Thus far, human placenta-derived MSC appear safe with no adverse events noted after 
intravenous infusion. If safety is confirmed in this Phase I trial we will proceed to a Phase II 
trial powered for efficacy. 

6.4 Phase I clinical trial of hpMSC for Achilles tendinopathy  

In 2011 we initiated our first study in the treatment of chronic refractory tendinopathy. 
Tendinopathy is a common condition associated with pain and tendon dysfunction. 
Tendinopathy often occurs in young, active adults. As life expectancy increases, so does the 
incidence of tendinopathy. This in turn will place large costs on the health system budget. 
The initial management of all tendinopathies is usually conservative and includes activity 
modification, medication, injections and exercises. If prolonged disability occurs, surgical 
treatment is considered which is expensive and involves periods of immobilisation. Current 
treatment is relatively ineffective, as tendons have a poor capacity to repair themselves. 
Therefore, stem cell therapies have been extensively researched in preclinical models as a 
possible treatment.  

Several animal studies have shown that MSC can repair the tendon defect, and regenerate 
the tendinopathic tissue (Nourissat et al., 2010, Chen et al., 2009, Lim et al., 2004). It may be 
that the main mechanism of MSC repair in this case is to enable differentiation into 
tenocytes. The biomechanics of the resulting tendon can be improved further by applying 
mechano-stimulation (e.g. exercise). This regenerative technique has not shown any 
complications in the published preclinical animal studies and seems a promising treatment 
in man.  
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6.4.1 Course of clinical trial 

This is a phase I, open-label, single centre, non-randomized dose-escalation evaluation of the 
safety and feasibility of MSC treatment for patients diagnosed with refractory Achilles 
tendinopathy. Up to nine patients will be enrolled in the study.  All patients will receive 
ultrasound-guided precision intratendinous injection of hpMSC into their damaged Achilles 
tendon. Injections will occur at least 4 weeks after the previous patient so that any early 
adverse effects from the previous hpMSC application can be closely monitored and 
assessed, both clinically and via diagnostic power doppler ultrasound examination. 

There will be 3 cohorts, each with 3 patients, to assess the safety of the MSC dose. The first 
cohort of 3 patients will receive a single dose of 1.0 x 106 placenta-derived MSC (1.0 ml of 
solution containing 1.0 x 106 MSC per ml) each. The next cohort of 3 patients will receive 4.0 
x 106 MSC (1.0 ml of solution containing 4.0 x 106 MSC per ml) each. The final cohort of 3 
patients will receive 1.6 x 107 MSC (1.0 ml of solution containing 1.6 x107 MSC per ml) each. 
An interim safety analysis will be carried out by the Data Safety Management Committee 
(DSMC) after each group of 3 has received their individual injection. This will occur 
following the 4 week post injection assessment, of the third member of each group. Should 
no serious adverse events be documented due to, or likely due to, the MSC injection, the 
subsequent group will receive a local guided precision injection at the next ascending dose.  

The injection phase of the study will take at least 9 months to complete. Therefore, from this 
clinical trial, there will be data to show if intra-tendinous injection of MSC is a safe 
treatment of otherwise treatment-refractory Achilles tendinopathy. 

6.4.2 Post-injection clinical course 

The primary purpose of this trial is to provide evidence of the safe delivery of intra-
tendinous injection of MSC. This will be assessed at 2 days post injection (via telephone), 2 
weeks, 4 weeks, 10 weeks and 26 weeks and will include ultrasound assessment of the 
tendon (after 4, 10 and 26 weeks).  

The second purpose is to measure the possible effectiveness of MSC in reducing the chronic 

morbidity associated with Achilles tendinopathy after 4, 10 and 26 weeks after 

intratendinous injection. Evidence for improvement in ultrasound and power doppler 

ultrasound assessment of tendon structure will include the following parameters: (i) tendon 

thickness (sagittal plane), (ii) echogenicity, (iii) discontinuity, (iv) neovascularisation and (v) 

other abnormalities.  

6.4.3 Expected outcomes  

It is proposed MSC may offer a safe and highly cost effective treatment for chronic 
refractory tendinopathy, which could increase population activity levels, improve quality of 
life, and minimise dependence on costly long term medication and allied health treatments. 
MSC-initiated tendon regeneration could reduce the requirement for surgical treatments, 
thereby reducing the risks and costs of surgery and post-operative immobility. MSC 
injections also have the potential to augment and accelerate orthopaedic surgical tendon 
repair, either intraoperatively or by percutaneous injection, and offer an alternative 
treatment for individuals in whom tendon surgery has failed or is not possible.  
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To the best of our knowledge, this is the first trial of the use of allogeneic placenta-derived 
mesenchymal stem cells in the treatment of chronic refractory tendinopathy. Although we 
have chosen to use MSC derived from whole placenta for our current clinical trials, we are 
currently conducting research that explores the possibility of more advantageous MSC 
residing within the placenta. It is hypothesised that fetal MSC derived from the term 
placenta may have different biological properties from maternal MSC, given the differences 
in age at the time of their development. Such differences may have implications in the 
potential use of MSC as therapeutic agents. Therefore, this research may prove to be useful 
for choosing the optimal gestational product MSC for our future clinical trial program. 

7. Conclusion/summary 

Human gestational tissues show great promise as alternative stem cell sources. They are 
readily available and provide a basically unlimited supply of donor tissue for generating 
both MSC, and in the case of cord blood, HSC therapeutic products.  
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