5 research outputs found

    Isotopic fingerprint for phosphorus in drinking water supplies

    Get PDF
    Phosphate dosing of drinking water supplies, coupled with leakage from distribution networks, represents a significant input of phosphorus to the environment. The oxygen isotope composition of phosphate (δ18OPO4), a novel stable isotope tracer for phosphorus, offers new opportunities to understand the importance of phosphorus derived from sources such as drinking water. We report the first assessment of δ18OPO4 within drinking water supplies. A total of 40 samples from phosphate-dosed distribution networks were analyzed from across England and Wales. In addition, samples of the source orthophosphoric acid used for dosing were also analyzed. Two distinct isotopic signatures for drinking water were identified (average = +13.2 or +19.7‰), primarily determined by δ18OPO4 of the source acid (average = +12.4 or +19.7‰). Dependent upon the source acid used, drinking water δ18OPO4 appears isotopically distinct from a number of other phosphorus sources. Isotopic offsets from the source acid ranging from −0.9 to +2.8‰ were observed. There was little evidence that equilibrium isotope fractionation dominated within the networks, with offsets from temperature-dependent equilibrium ranging from −4.8 to +4.2‰. While partial equilibrium fractionation may have occurred, kinetic effects associated with microbial uptake of phosphorus or abiotic sorption and dissolution reactions may also contribute to δ18OPO4 within drinking water supplies

    Determining the Impact of Riparian Wetlands on Nutrient Cycling, Storage and Export in Permeable Agricultural Catchments

    Get PDF
    The impact of riparian wetlands on the cycling, retention and export of nutrients from land to water varies according to local environmental conditions and is poorly resolved in catchment management approaches. To determine the role a specific wetland might play in a catchment mitigation strategy, an alternative approach is needed to the high-frequency and spatially detailed monitoring programme that would otherwise be needed. Here, we present a new approach using a combination of novel and well-established geochemical, geophysical and isotope ratio methods. This combined approach was developed and tested against a 2-year high-resolution sampling programme in a lowland permeable wetland in the Lambourn catchment, UK. The monitoring programme identified multiple pathways and water sources feeding into the wetland, generating large spatial and temporal variations in nutrient cycling, retention and export behaviours within the wetland. This complexity of contributing source areas and biogeochemical functions within the wetland were effectively identified using the new toolkit approach. We propose that this technique could be used to determine the likely net source/sink function of riparian wetlands prior to their incorporation into any catchment management plan, with relatively low resource implications when compared to a full high-frequency nutrient speciation and isotope geochemistry-based monitoring approach

    Correction:Determining the Impact of Riparian Wetlands on Nutrient Cycling, Storage and Export in Permeable Agricultural Catchments [Water (2020), 12, (167)]. DOI: 10.3390/w12010167

    No full text
    The authors wish to make the following corrections to this paper [1]: Please replace Funding section with the funding below: Funding: This research was funded under the NERC DOMAINE programme (NE/K010689/1); NERC LOCAR programme (NER/F3/G13/17/41; NER/T/S/2001/00942), jointly funded by the Environment Agency); a NERC Isotope Geoscience Facility grant (NER/IP/779/0902); and a NERC studentship for Hannah Prior (GT4/94/402), jointly funded by English Nature. We also acknowledge the immense field support from Nigel Crook, supported under a NERC LOCAR grant NER/T/S/2001/00948, and Heather Musgrave, funded through a further NERC studentship NER/S/A/2003/11344. The authors would like to apologize for any inconvenience caused to the readers by the change. The change does not affect the scientific results. The manuscript will be updated and the original will remain online on the article webpage, with a reference to this correction. © 2020 by the author

    Comparative sclerochronology of modern and mid-Pliocene (c. 3.5 Ma) Aequipecten opercularis (Mollusca, Bivalvia) : an insight into past and future climate change in the North-East Atlantic region

    No full text
    Records of environment contained within the accretionarily deposited tissues of fossil organisms afford a means of detailed reconstruction of past climates and hence of rigorous testing of numerical climate models. We identify the environmental factors controlling oxygen and carbon stable-isotopic composition, and microgrowth-increment size, in the shell of modern examples of the Queen Scallop, Aequipecten opercularis. This understanding is then applied in interpretation of data from mid-Pliocene A. opercularis from eastern England. On the basis of oxygen-isotope evidence we conclude that winter minimum seafloor temperature was similar to present values (typically 6–7 °C) in the adjacent southern North Sea and that summer maximum seafloor temperature was a few degrees lower than present values (typically 16–17 °C). This contrasts with evidence from other proxies that winter and summer temperatures were higher than present. The pattern of seasonal variation in microgrowth-increment size suggests the existence of intense thermal stratification in summer. We therefore conclude that summer surface temperatures were much higher (maxima well over 20 °C) than those recorded isotopically on the seafloor and that the annual range of surface temperature (probably over 14 °C) was greater than now at the times in the mid-Pliocene when the investigated A. opercularis were alive. Taken in conjunction with other proxy evidence of warmer winters as well as summers, the data point to substantial fluctuation (up to 10 °C) in winter minimum temperatures during the mid-Pliocene in the north-east Atlantic region. This fluctuation may be attributable to variation in the strength of the Gulf Stream/North Atlantic Drift. Since the Pliocene has been widely used as a test-bed for numerical models of a greenhouse Earth, the results have implications for prediction of future climate in the north-east Atlantic region under the influence of anthropogenic global warming

    High-temperature pyrolysis/gas chromatography/isotope ratio mass spectrometry : simultaneous measurement of the stable isotopes of oxygen and carbon in cellulose

    No full text
    Stable isotope analysis of cellulose is an increasingly important aspect of ecological and palaeoenvironmental research. Since these techniques are very costly, any methodological development which can provide simultaneous measurement of stable carbon and oxygen isotope ratios in cellulose deserves further exploration. A large number (3074) of tree-ring α-cellulose samples are used to compare the stable carbon isotope ratios (δ13C) produced by high-temperature (1400°C) pyrolysis/gas chromatography (GC)/isotope ratio mass spectrometry (IRMS) with those produced by combustion GC/IRMS. Although the two data sets are very strongly correlated, the pyrolysis results display reduced variance and are strongly biased towards the mean. The low carbon isotope ratios of tree-ring cellulose during the last century, reflecting anthropogenic disturbance of atmospheric carbon dioxide, are thus overestimated. The likely explanation is that a proportion of the oxygen atoms are bonding with residual carbon in the reaction chamber to form carbon monoxide. The 'pyrolysis adjustment', proposed here, is based on combusting a stratified sub-sample of the pyrolysis results, across the full range of carbon isotope ratios, and using the paired results to define a regression equation that can be used to adjust all the pyrolysis measurements. In this study, subsamples of 30 combustion measurements produced adjusted chronologies statistically indistinguishable from those produced by combusting every sample. This methodology allows simultaneous measurement of the stable isotopes of carbon and oxygen using high-temperature pyrolysis, reducing the amount of sample required and the analytical costs of measuring them separately
    corecore