2,135 research outputs found

    Spatial distribution of forest aboveground biomass estimated from remote sensing and forest inventory data in New England, USA.

    Get PDF
    Abstract We combined satellite (Landsat 7 and Moderate Resolution Imaging Spectrometer) and U.S. Department of Agriculture forest inventory and analysis (FIA) data to estimate forest aboveground biomass (AGB) across New England, USA. This is practical for large-scale carbon studies and may reduce uncertainty of AGB estimates. We estimate that total regional forest AGB was 1,867 teragram (1012, dry weight) in 2001, with a mean AGB density of 120 Mg/ha (Standard deviation = 54 Mg/ha) ranging from 15 to 240 Mg/ha within a 95% percentile. The majority of regional AGB density was in the range of 80 to 160 Mg/ha (58.2%). High AGB densities were observed along the Appalachian Mountains from northwestern Connecticut to the Green Mountains in Vermont and White Mountains in New Hampshire, while low AGB densities were concentrated in the Downeast area of Maine (ME) and the Cape Cod area of Massachusetts (MA). At the state level, the averaged difference in mean AGB densities between simulated and FIA (as reference) was -2.0% ranging from 0% to -4.2% with a standard error of 3.2%. Within the 95% confidence interval the differences between FIA and simulated AGB densities ranged from 0 to 6% (absolute value). Our study may provide useful information for regional fuel-loading estimates

    Carbon changes in conterminous US forests associated with growth and major disturbances.

    Get PDF
    Abstract We estimated forest area and carbon changes in the conterminous United States using a remote sensing based land cover change map, forest fire data from the Monitoring Trends in Burn Severity program, and forest growth and harvest data from the USDA Forest Service, Forest Inventory and Analysis Program. Natural and human-associated disturbances reduced the forest ecosystems\u27 carbon sink by 36% from 1992 to 2001, compared to that without disturbances in the 48 states. Among the three identified disturbances, forest-related land cover change contributed 33% of the total effect in reducing the forest carbon potential sink, while harvests and fires accounted for 63% and 4% of the total effect, respectively. The nation\u27s forests sequestered 1.6 ± 0.1Pg (1015 petagram) carbon during the period, or 0.18PgCyr-1, with substantial regional variation. The southern region of the United States was a small net carbon source whereas the greater Pacific Northwest region was a strong net sink. Results of the approach fit reasonably well at an aggregate level with other related estimates of the current forest US greenhouse gas inventory, suggesting that further research using this approach is warranted

    The fully-functioning university and its contribution to society

    Get PDF
    by introducing the concept of the ‘fully-functioning university’ in 2008. Subsequent articles have looked at the consequences of this concept for the higher education of students and the advancement of knowledge. This article is about the fully-functioning university and its contribution to the service part of the tripartite mission; the ‘third leg’. Its main aim is to identify how social engagement can best contribute to the tripartite mission in total. The main conclusions are that: (1) there is a set of questions that can be used to help enlarge the contribution of third leg work to the advancement of knowledge, (2) there is another set of questions that can be used to help enlarge the contribution of third leg projects to the higher education of students and (3) greater use of project-based thinking within the domain of the third leg activities can support research-led, and hence evidence-based, practices and outcomes. The article ends with some implications of these conclusions and some questions surfaced by this enquiry

    University of Memphis Open Educational Resources (OER) Faculty Quick Start Guide

    Get PDF
    This guide is designed to introduce faculty at the University of Memphis to why and how to use Open Educational Resources (OER) in their teaching. it covers basic concepts surrounding OER, how to find and evaluate OER to use in your courses, how to incorporate OER into your teaching, and how to learn more. Table of Contents Implications of OER Understanding OER Using OER Commons Using Canvas Commons Additional OER Recommendations Reflections on OER Incorporating OER Continued OER Learninghttps://digitalcommons.memphis.edu/oer/1000/thumbnail.jp

    Carbon benefits from protected areas in the conterminous United States

    Get PDF
    Background: Conversion of forests to other land cover or land use releases the carbon stored in the forests and reduces carbon sequestration potential of the land. The rate of forest conversion could be reduced by establishing protected areas for biological diversity and other conservation goals. The purpose of this study is to quantify the efficiency and potential of forest land protection for mitigating GHG emissions. Results: The analysis of related national-level datasets shows that during the period of 1992–2001 net forest losses in protected areas were small as compared to those in unprotected areas: -0.74% and −4.07%, respectively. If forest loss rates in protected and unprotected area had been similar, then forest losses in the protected forestlands would be larger by 870 km2/yr forests, that corresponds to release of 7 Tg C/yr (1 Tg=1012 g). Conversely, and continuing to assume no leakage effects or interactions of prices and harvest levels, about 1,200 km2/yr forests could have remained forest during the period of 1992–2001 if net area loss rate in the forestland outside protected areas was reduced by 20%. Not counting carbon in harvested wood products, this is equivalent to reducing fossil-fuel based carbon emissions by 10 Tg C/yr during this period. The South and West had much higher potentials to mitigate GHG emission from reducing loss rates in unprotected forests than that of North region. Spatially, rates of forest loss were higher across the coastal states in the southeastern US than would be expected from their population change, while interior states in the northern US experienced less forest area loss than would have been expected given their demographic characteristics. Conclusions: The estimated carbon benefit from the reduced forest loss based on current protected areas is 7 Tg C/yr, equivalent to the average carbon benefit per year for a previously proposed ten-year $110 million per year tree planting program scenario in the US. If there had been a program that could have reduced forest area loss by 20% in unprotected forestlands during 1992–2001, collectively the benefits from reduced forest loss would be equal to 9.4% of current net forest ecosystem carbon sequestration in the conterminous US

    Sin Nombre Virus Infection in Field Workers, Colorado, USA

    Get PDF
    We report 2 cases of Sin Nombre virus (SNV) infection in field workers, possibly contracted through rodent bites. Screening for antibodies to SNV in rodents trapped in 2 seasons showed that 9.77% were seropositive. Quantitative real-time PCR showed that 2 of 79 deer mice had detectable titers of SNV RNA
    corecore