12,739 research outputs found

    Asymmetries in ozone depressions between the polar stratospheres following a solar proton event

    Get PDF
    Ozone depletions in the polar stratosphere during the energetic solar proton event on 4 August 1972 were observed by the backscattered ultraviolet (BUV) experiments on the Nimbus 4 satellite. The observed ozone contents, the ozone depressions and their temporal variations above the 4 mb level exhibited distinct asymmetries between the northern and southern hemispheres. Since the ozone destroying solar particles precipitate rather symmetrically into the two polar atmospheres, due to the geomagnetic dipole field, it is suggested that these asymmetries may be explained in terms of the differences in dynamics between the summer and the winter polar atmospheres. In the summer (northern) hemisphere, the stratospheric and mesospheric ozone depletion and recovery are smooth functions of time due to the preponderance of undistributed orderly flow in this region. On the other hand, the temporal variation of the upper stratospheric ozone in the winter polar atmosphere (southern hemisphere) exhibits large amplitude irregularities. These characteristic differences between the two polar atmospheres are also evident in the vertical distributions of temperatures and winds observed by balloons and rocket soundings

    User's guide for the Solar Backscattered Ultraviolet (SBUV) and the Total Ozone Mapping Spectrometer (TOMS) RUT-S and RUT-T data sets: October 31, 1978 to November 1, 1980

    Get PDF
    Raw data from the Solar Backscattered Ultrviolet/Total Ozone Mapping Spectrometer (SBUV/TOMS) Nimbus 7 operation are available on computer tape. These data are contained on two separate sets of RUTs (Raw Units Tapes) for SBUV and TOMS, labelled RUT-S and RUT-T respectively. The RUT-S and RUT-T tapes contain uncalibrated radiance and irradiance data, housekeeping data, wavelength and electronic calibration data, instrument field-of-view location and solar ephemeris information. These tapes also contain colocated cloud, terrain pressure and snow/ice thickness data, each derived from an independent source. The "RUT User's Guide" describes the SBUV and TOMS experiments, the instrument calibration and performance, operating schedules, and data coverage, and provides an assessment of RUT-S and -T data quality. It also provides detailed information on the data available on the computer tapes

    Upward Three-Dimensional Grid Drawings of Graphs

    Full text link
    A \emph{three-dimensional grid drawing} of a graph is a placement of the vertices at distinct points with integer coordinates, such that the straight line segments representing the edges do not cross. Our aim is to produce three-dimensional grid drawings with small bounding box volume. We prove that every nn-vertex graph with bounded degeneracy has a three-dimensional grid drawing with O(n3/2)O(n^{3/2}) volume. This is the broadest class of graphs admiting such drawings. A three-dimensional grid drawing of a directed graph is \emph{upward} if every arc points up in the z-direction. We prove that every directed acyclic graph has an upward three-dimensional grid drawing with (n3)(n^3) volume, which is tight for the complete dag. The previous best upper bound was O(n4)O(n^4). Our main result is that every cc-colourable directed acyclic graph (cc constant) has an upward three-dimensional grid drawing with O(n2)O(n^2) volume. This result matches the bound in the undirected case, and improves the best known bound from O(n3)O(n^3) for many classes of directed acyclic graphs, including planar, series parallel, and outerplanar

    Nimbus 7 solar backscatter ultraviolet (SBUV) ozone products user's guide

    Get PDF
    Three ozone tape products from the Solar Backscatter Ultraviolet (SBUV) experiment aboard Nimbus 7 were archived at the National Space Science Data Center. The experiment measures the fraction of incoming radiation backscattered by the Earth's atmosphere at 12 wavelengths. In-flight measurements were used to monitor changes in the instrument sensitivity. Total column ozone is derived by comparing the measurements with calculations of what would be measured for different total ozone amounts. The altitude distribution is retrieved using an optimum statistical technique for the inversion. The estimated initial error in the absolute scale for total ozone is 2 percent, with a 3 percent drift over 8 years. The profile error depends on latitude and height, smallest at 3 to 10 mbar; the drift increases with increasing altitude. Three tape products are described. The High Density SBUV (HDSBUV) tape contains the final derived products - the total ozone and the vertical ozone profile - as well as much detailed diagnostic information generated during the retrieval process. The Compressed Ozone (CPOZ) tape contains only that subset of HDSBUV information, including total ozone and ozone profiles, considered most useful for scientific studies. The Zonal Means Tape (ZMT) contains daily, weekly, monthly and quarterly averages of the derived quantities over 10 deg latitude zones

    Cellular Structures for Computation in the Quantum Regime

    Full text link
    We present a new cellular data processing scheme, a hybrid of existing cellular automata (CA) and gate array architectures, which is optimized for realization at the quantum scale. For conventional computing, the CA-like external clocking avoids the time-scale problems associated with ground-state relaxation schemes. For quantum computing, the architecture constitutes a novel paradigm whereby the algorithm is embedded in spatial, as opposed to temporal, structure. The architecture can be exploited to produce highly efficient algorithms: for example, a list of length N can be searched in time of order cube root N.Comment: 11 pages (LaTeX), 3 figure

    EVENTSKG: A 5-Star Dataset of Top-Ranked Events in Eight Computer Science Communities

    Get PDF
    Metadata of scientific events has become increasingly available on the Web, albeit often as raw data in various formats, disregarding its semantics and interlinking relations. This leads to restricting the usability of this data for, e.g., subsequent analyses and reasoning. Therefore, there is a pressing need to represent this data in a semantic representation, i.e., Linked Data. We present the new release of the EVENTSKG dataset, comprising comprehensive semantic descriptions of scientific events of eight computer science communities. Currently, EVENTSKG is a 5-star dataset containing metadata of 73 top-ranked event series (almost 2,000 events) established over the last five decades. The new release is a Linked Open Dataset adhering to an updated version of the Scientific Events Ontology, a reference ontology for event metadata representation, leading to richer and cleaner data. To facilitate the maintenance of EVENTSKG and to ensure its sustainability, EVENTSKG is coupled with a Java API that enables users to add/update events metadata without going into the details of the representation of the dataset. We shed light on events characteristics by analyzing EVENTSKG data, which provides a flexible means for customization in order to better understand the characteristics of renowned CS events

    Effect of SLM Build Parameters on the Compressive Properties of 304L Stainless Steel

    Get PDF
    Selective laser melting (SLM) is well suited for the efficient manufacturing of complex structures because of its manufacturing methodology. The optimized process parameters for each alloy has been a cause for debate in recent years. In this study, the hatch angle and build orientation were investigated. 304L stainless steel samples were manufactured using three hatch angles (0◦, 67◦, and 105◦) in three build orientations (x-, y-, and z-direction) and tested in compression. Analysis of variance and Tukey\u27s test were used to evaluate the obtained results. Results showed that the measured compressive yield strength and plastic flow stress varied when the hatch angle and build orientation changed. Samples built in the y-direction exhibited the highest yield strength irrespective of the hatch angle; although, samples manufactured using a hatch angle of 0◦ exhibited the lowest yield strength. Samples manufactured with a hatch angle of 0◦ flowed at the lowest stress at 35% plastic strain. Samples manufactured with hatch angles of 67◦ and 105◦ flowed at statistically the same flow stress at 35% plastic strain. However, samples manufactured with a 67◦ hatch angle deformed non-uniformly. Therefore, it can be concluded that 304L stainless steel parts manufactured using a hatch angle of 105◦ in the y-direction exhibited the best overall compressive behavior
    corecore