821 research outputs found
A Strategic E-Marketing Framework For Sport Mega-Events
This article reports on a study that was conducted which aims to understand the optimal usage of e-marketing in sport mega-events with reference to the 2010 FIFA Soccer World CupTM which was held in South Africa. A conceptual framework to optimally leverage e-marketing opportunities related to the hosting of sport mega-events was developed from the findings of this study. Building on an in-depth analysis of the contemporary literature on this very dynamic topic, as well as key lessons learned from an analysis of international case studies, primary research was conducted before and after the 2010 FIFA Soccer World CupTM, involving key stakeholders in the event and destination marketing sphere. Based on the preceding phases, the strategic framework that was conceptualised provides parameters and guidelines for the effective utilisation of e-marketing and e-marketing tools in future sport mega-events. Furthermore, 11 critical success factors (CSFs) were determined that should be considered when developing and implementing an e-marketing strategy for mega-events. In addition to adding value to the body of knowledge in this increasingly important sphere of tourism, recommendations regarding future research in this dynamic field of study are addressed
Habitable Zones and UV Habitable Zones around Host Stars
Ultraviolet radiation is a double-edged sword to life. If it is too strong,
the terrestrial biological systems will be damaged. And if it is too weak, the
synthesis of many biochemical compounds can not go along. We try to obtain the
continuous ultraviolet habitable zones, and compare the ultraviolet habitable
zones with the habitable zones of host stars. Using the boundary ultraviolet
radiation of ultraviolet habitable zone, we calculate the ultraviolet habitable
zones of host stars with masses from 0.08 to 4.00 \mo. For the host stars with
effective temperatures lower than 4,600 K, the ultraviolet habitable zones are
closer than the habitable zones. For the host stars with effective temperatures
higher than 7,137 K, the ultraviolet habitable zones are farther than the
habitable zones. For hot subdwarf as a host star, the distance of the
ultraviolet habitable zone is about ten times more than that of the habitable
zone, which is not suitable for life existence.Comment: 5 pages, 3 figure
Type 2 diabetes mellitus-associated transcriptome alterations in cortical neurones and associated neurovascular unit cells in the ageing brain
Type 2 diabetes mellitus (T2D), characterised by peripheral insulin resistance, is a risk factor for dementia. In addition to its contribution to small and large vessel disease, T2D may directly damage cells of the brain neurovascular unit. In this study, we investigated the transcriptomic changes in cortical neurones, and associated astrocytes and endothelial cells of the neurovascular unit, in the ageing brain. Neurone, astrocyte, and endothelial cell-enriched mRNA, obtained by immuno-laser capture microdissection of temporal cortex (Brodmann area 21/22) from 6 cases with self-reported T2D in the Cognitive Function and Ageing Study neuropathology cohort, and an equal number of age and sex-matched controls, was assessed by microarray analysis. Integrated Molecular Pathway Level Analysis was performed using the Kyoto Encyclopaedia of Genes and Genomes database on significantly differentially expressed genes, defined as P < 0.05 and fold-change ± 1.2. Hub genes identified from Weighted Gene Co-expression Network Analysis were validated in neurones using the NanoString nCounter platform. The expression and cellular localisation of proteins encoded by selected candidate genes were confirmed by immunohistochemistry. 912, 2202, and 1227 genes were significantly differentially expressed between cases with self-reported T2D and controls in neurones, astrocytes, and endothelial cells respectively. Changes in cortical neurones included alterations in insulin and other signalling pathways, cell cycle, cellular senescence, inflammatory mediators, and components of the mitochondrial respiratory electron transport chain. Impaired insulin signalling was shared by neurovascular unit cells with, additionally, apoptotic pathway changes in astrocytes and dysregulation of advanced glycation end-product signalling in endothelial cells. Transcriptomic analysis identified changes in key cellular pathways associated with T2D that may contribute to neuronal damage and dysfunction. These effects on brain cells potentially contribute to a diabetic dementia, and may provide novel approaches for therapeutic intervention
A general framework for combining ecosystem models
When making predictions about ecosystems, we often have available a number of different ecosystem models that attempt to represent their dynamics in a detailed mechanistic way. Each of these can be used as a simulator of large-scale experiments and make projections about the fate of ecosystems under different scenarios to support the development of appropriate management strategies. However, structural differences, systematic discrepancies and uncertainties lead to different models giving different predictions. This is further complicated by the fact that the models may not be run with the same functional groups, spatial structure or time scale. Rather than simply trying to select a “best” model, or taking some weighted average, it is important to exploit the strengths of each of the models, while learning from the differences between them. To achieve this, we construct a flexible statistical model of the relationships between a collection of mechanistic models and their biases, allowing for structural and parameter uncertainty and for different ways of representing reality. Using this statistical meta-model, we can combine prior beliefs, model estimates and direct observations using Bayesian methods and make coherent predictions of future outcomes under different scenarios with robust measures of uncertainty. In this study, we take a diverse ensemble of existing North Sea ecosystem models and demonstrate the utility of our framework by applying it to answer the question what would have happened to demersal fish if fishing was to stop
Metal enrichment processes
There are many processes that can transport gas from the galaxies to their
environment and enrich the environment in this way with metals. These metal
enrichment processes have a large influence on the evolution of both the
galaxies and their environment. Various processes can contribute to the gas
transfer: ram-pressure stripping, galactic winds, AGN outflows, galaxy-galaxy
interactions and others. We review their observational evidence, corresponding
simulations, their efficiencies, and their time scales as far as they are known
to date. It seems that all processes can contribute to the enrichment. There is
not a single process that always dominates the enrichment, because the
efficiencies of the processes vary strongly with galaxy and environmental
properties.Comment: 18 pages, 8 figures, accepted for publication in Space Science
Reviews, special issue "Clusters of galaxies: beyond the thermal view",
Editor J.S. Kaastra, Chapter 17; work done by an international team at the
International Space Science Institute (ISSI), Bern, organised by J.S.
Kaastra, A.M. Bykov, S. Schindler & J.A.M. Bleeke
Establishing mRNA and microRNA interactions driving disease heterogeneity in amyotrophic lateral sclerosis patient survival
Amyotrophic lateral sclerosis is a fatal neurodegenerative disease, associated with the degeneration of both upper and lower motor neurons of the motor cortex, brainstem and spinal cord. Death in most patients results from respiratory failure within 3–4 years from symptom onset. However, due to disease heterogeneity some individuals survive only months from symptom onset while others live for several years. Identifying specific biomarkers that aid in establishing disease prognosis, particularly in terms of predicting disease progression, will help our understanding of amyotrophic lateral sclerosis pathophysiology and could be used to monitor a patient’s response to drugs and therapeutic agents. Transcriptomic profiling technologies are continually evolving, enabling us to identify key gene changes in biological processes associated with disease. MicroRNAs are small non-coding RNAs typically associated with regulating gene expression, by degrading mRNA or reducing levels of gene expression. Being able to associate gene expression changes with corresponding microRNA changes would help to distinguish a more complex biomarker signature enabling us to address key challenges associated with complex diseases such as amyotrophic lateral sclerosis. The present study aimed to investigate the transcriptomic profile (mRNA and microRNA) of lymphoblastoid cell lines from amyotrophic lateral sclerosis patients to identify key signatures that are distinguishable in those patients who suffered a short disease duration (6 years) (n = 20). Transcriptional profiling of microRNA–mRNA interactions from lymphoblastoid cell lines in amyotrophic lateral sclerosis patients revealed differential expression of genes involved in cell cycle, DNA damage and RNA processing in patients with longer survival from disease onset compared with those with short survival. Understanding these particular microRNA–mRNA interactions and the pathways in which they are involved may help to distinguish potential therapeutic targets that could exert neuroprotective effects to prolong the life expectancy of amyotrophic lateral sclerosis patients
Observation of Scaling Violations in Scaled Momentum Distributions at HERA
Charged particle production has been measured in deep inelastic scattering
(DIS) events over a large range of and using the ZEUS detector. The
evolution of the scaled momentum, , with in the range 10 to 1280
, has been investigated in the current fragmentation region of the Breit
frame. The results show clear evidence, in a single experiment, for scaling
violations in scaled momenta as a function of .Comment: 21 pages including 4 figures, to be published in Physics Letters B.
Two references adde
D* Production in Deep Inelastic Scattering at HERA
This paper presents measurements of D^{*\pm} production in deep inelastic
scattering from collisions between 27.5 GeV positrons and 820 GeV protons. The
data have been taken with the ZEUS detector at HERA. The decay channel
(+ c.c.) has been used in the study. The
cross section for inclusive D^{*\pm} production with
and is 5.3 \pms 1.0 \pms 0.8 nb in the kinematic region
{ GeV and }. Differential cross
sections as functions of p_T(D^{*\pm}), and are
compared with next-to-leading order QCD calculations based on the photon-gluon
fusion production mechanism. After an extrapolation of the cross section to the
full kinematic region in p_T(D^{*\pm}) and (D^{*\pm}), the charm
contribution to the proton structure function is
determined for Bjorken between 2 10 and 5 10.Comment: 17 pages including 4 figure
- …