68 research outputs found
Virtual O(\a_s) corrections to the inclusive decay
We present in detail the calculation of the O(\a_s) virtual corrections to
the matrix element for b \to s \g. Besides the one-loop virtual corrections
of the electromagnetic and color dipole operators and , we include
the important two-loop contribution of the four-Fermi operator . By
applying the Mellin-Barnes representation to certain internal propagators, the
result of the two-loop diagrams is obtained analytically as an expansion in
. These results are then combined with existing O(\a_s)
Bremsstrahlung corrections in order to obtain the inclusive rate for B \to X_s
\g. The new contributions drastically reduce the large renormalization scale
dependence of the leading logarithmic result. Thus a very precise Standard
Model prediction for this inclusive process will become possible once also the
corrections to the Wilson coefficients are available.Comment: 29 pages, uses epsfig.sty, 12 postscript figures include
Jockeying for position: the construction of masculine identities
In this paper we examine the construction of masculine identities within a real-life social situation. Using data from an extensive series of interviews with small groups of sixth-form (17-18-year-old) students attending a UK-based, single-sex independent school, the analysis looks at the action orientation of different constructions of identity. More specifically, it focuses upon how the identity talk of one particular group of students were oriented towards managing their subordinate status within the school. In a number of instances the identity of the `new man' was adopted as a strategy of resistance. However, it was found that the more common strategy involved buying back into values embodied within a more traditional definition of masculinity
Integrated motor drives: state of the art and future trends
With increased need for high power density, high efficiency and high temperature capabilities in Aerospace and Automotive applications, Integrated Motor Drives (IMD) offers a potential solution. However, close physical integration of the converter and the machine may also lead to an increase in components temperature. This requires careful mechanical, structural and thermal analysis; and design of the IMD system.
This paper reviews existing IMD technologies and their thermal effects on the IMD system. The effects of the power electronics (PE) position on the IMD system and its respective thermal management concepts are also investigated. The challenges faced in designing and manufacturing of an IMD along with the mechanical and structural impacts of close physical integration is also discussed and potential solutions are provided. Potential converter topologies for an IMD like the Matrix converter, 2-level Bridge, 3-level NPC and Multiphase full bridge converters are also reviewed. Wide band gap devices like SiC and GaN and their packaging in power modules for IMDs are also discussed. Power modules components and packaging technologies are also presented
Diving into the vertical dimension of elasmobranch movement ecology
Knowledge of the three-dimensional movement patterns of elasmobranchs is vital to understand their ecological roles and exposure to anthropogenic pressures. To date, comparative studies among species at global scales have mostly focused on horizontal movements. Our study addresses the knowledge gap of vertical movements by compiling the first global synthesis of vertical habitat use by elasmobranchs from data obtained by deployment of 989 biotelemetry tags on 38 elasmobranch species. Elasmobranchs displayed high intra- and interspecific variability in vertical movement patterns. Substantial vertical overlap was observed for many epipelagic elasmobranchs, indicating an increased likelihood to display spatial overlap, biologically interact, and share similar risk to anthropogenic threats that vary on a vertical gradient. We highlight the critical next steps toward incorporating vertical movement into global management and monitoring strategies for elasmobranchs, emphasizing the need to address geographic and taxonomic biases in deployments and to concurrently consider both horizontal and vertical movements
Diverse perspectives on interdisciplinarity from members of the college of the Royal Society of Canada
Various multiple-disciplinary terms and concepts (although most commonly “interdisciplinarity,” which is used herein) are used to frame education, scholarship, research, and interactions within and outside academia. In principle, the premise of interdisciplinarity may appear to have many strengths; yet, the extent to which interdisciplinarity is embraced by the current generation of academics, the benefits and risks for doing so, and the barriers and facilitators to achieving interdisciplinarity, represent inherent challenges. Much has been written on the topic of interdisciplinarity, but to our knowledge there have been few attempts to consider and present diverse perspectives from scholars, artists, and scientists in a cohesive manner. As a team of 57 members from the Canadian College of New Scholars, Artists, and Scientists of the Royal Society of Canada (the College) who self-identify as being engaged or interested in interdisciplinarity, we provide diverse intellectual, cultural, and social perspectives. The goal of this paper is to share our collective wisdom on this topic with the broader community and to stimulate discourse and debate on the merits and challenges associated with interdisciplinarity. Perhaps the clearest message emerging from this exercise is that working across established boundaries of scholarly communities is rewarding, necessary, and is more likely to result in impact. However, there are barriers that limit the ease with which this can occur (e.g., lack of institutional structures and funding to facilitate cross-disciplinary exploration). Occasionally, there can be significant risk associated with doing interdisciplinary work (e.g., lack of adequate measurement or recognition of work by disciplinary peers). Solving many of the world’s complex and pressing problems (e.g., climate change, sustainable agriculture, the burden of chronic disease, and aging populations) demands thinking and working across long-standing, but in some ways restrictive, academic boundaries. Academic institutions and key support structures, especially funding bodies, will play an important role in helping to realize what is readily apparent to all who contributed to this paper—that interdisciplinarity is essential for solving complex problems; it is the new norm. Failure to empower and encourage those doing this research will serve as a great impediment to training, knowledge, and addressing societal issues
A model of flow and nutrient absorption in artificial wetland systems
An analysis is presented of nutrient absorption controlled by a simple growth law in an artificial wetland system. The distribution of transit times for fluid particles to pass through the wetland is described by a function determined from experimental dye data, and the model includes a constant diffusion term, which is important at slow flow rates. The nutrient absorption efficiency is determined as a function of the flow rate and size of the system. Conditions for maximum absorption are derived from the model for a fixed rate of nutrient input to the wetland using an assumption of nonoverlapping paths. Diffusion within the wetland tends to decrease the absorption efficiency, but this effect may be negligible, provided that the optimum flow rate lies well above a certain minimum value, which is derived from the analysis
- …