35 research outputs found

    A Resource Centric Approach For Advancing Collaboration Through Hydrologic Data And Model Sharing

    Full text link
    HydroShare is an online, collaborative system being developed for open sharing of hydrologic data and models. The goal of HydroShare is to enable scientists to easily discover and access hydrologic data and models, retrieve them to their desktop or perform analyses in a distributed computing environment that may include grid, cloud or high performance computing model instances as necessary. Scientists may also publish outcomes (data, results or models) into HydroShare, using the system as a collaboration platform for sharing data, models and analyses. HydroShare is expanding the data sharing capability of the CUAHSI Hydrologic Information System by broadening the classes of data accommodated, creating new capability to share models and model components, and taking advantage of emerging social media functionality to enhance information about and collaboration around hydrologic data and models. One of the fundamental concepts in HydroShare is that of a Resource. All content is represented using a Resource Data Model that separates system and science metadata and has elements common to all resources as well as elements specific to the types of resources HydroShare will support. These will include different data types used in the hydrology community and models and workflows that require metadata on execution functionality. The HydroShare web interface and social media functions are being developed using the Drupal content management system. A geospatial visualization and analysis component enables searching, visualizing, and analyzing geographic datasets. The integrated Rule-Oriented Data System (iRODS) is being used to manage federated data content and perform rule-based background actions on data and model resources, including parsing to generate metadata catalog information and the execution of models and workflows. This presentation will introduce the HydroShare functionality developed to date, describe key elements of the Resource Data Model and outline the roadmap for future development

    Clinical Findings in Four Children with Biotinidase Deficiency Detected through a Statewide Neonatal Screening Program

    Get PDF
    Four children with biotinidase deficiency were identified during the first year of a neonatal screening program for this disease in the Commonwealth of Virginia. Two unrelated probands were identified among the 81,243 newborn infants who were screened. In addition, two siblings of one of these infants were found to be affected. Both probands had mild neurologic symptoms at two and four months, respectively, and the two older children had more severe neurologic abnormalities, cutaneous findings, and developmental delay at two and three years of age. However, none of the affected children had acute metabolic decompensation. Previous studies have shown that the administration of biotin to affected children can be a lifesaving procedure that can reverse acute symptoms and prevent irreversible neurologic damage. Our findings demonstrate that subtle neurologic abnormalities may appear as early as at two months of age and that developmental abnormalities may occur even in the absence of episodes of overt metabolic decompensation. Since screening and treatment are both inexpensive and effective and the incidence of the disease is well within the range of that of other metabolic diseases for which screening is performed, biotinidase deficiency should be added to the group of metabolic diseases for which screening is done in the neonatal period. (N Engl J Med 1985; 313:16–9.

    An Architectural Overview Of HydroShare, A Next-Generation Hydrologic Information System

    Full text link
    HydroShare is an online, open-source, collaborative system being developed for sharing hydrologic data and models as part of the NSF’s Software Infrastructure for Sustained Innovation (SI2) program. The goal of HydroShare is to enable scientists to easily discover and access hydrologic data and models, retrieve them to their desktop, or perform analyses in a distributed computing environment that may include grid, cloud, or high performance computing. Scientists may also publish outcomes (data, results or models) into HydroShare, using the system as a collaboration platform for sharing data, models, and analyses. HydroShare involves a large distributed software development effort requiring collaboration between domain scientists, software engineers, and software developers across eight U.S. universities, RENCI, and CUAHSI. HydroShare expands the data sharing capabilities of the Hydrologic Information System of the Consortium of Universities for the Advancement of Hydrologic Sciences, Inc. (CUAHSI): It broadens the classes of data accommodated, enables sharing of models and model components, and leverages social media functionality to enhance collaboration around hydrologic data and models. The HydroShare architecture is a stack of storage and computation, web services, and user applications. A content management system, Django+Mezzanine, provides user interface, search, social media functions, and services. A geospatial visualization and analysis component enables searching, visualizing, and analyzing geographic datasets. The integrated Rule-Oriented Data System (iRODS) is used to manage federated data content and perform rule-based background actions on data and model resources, including parsing to generate metadata catalog information and the distributed execution of models and workflows. A web browser is the main interface to HydroShare, however a web services applications programming interface (API) supports access through HydroDesktop and other hydrologic modeling systems, and the architecture separates the interface layer and services layer exposing all functionality through these web services. This presentation will describe key components of HydroShare and discuss how HydroShare is designedto enable better hydrologic science concomitant with sustainable open-source software practices

    Standard Retrieval Models over Partitioned Indices for the Terabyte Track ABSTRACT

    No full text
    For TREC-2004, we participated in the Terabyte track. We focused on partitioning the data in the GOV2 collection across a homogeneous cluster of machines and indexing and querying the collection in a distributed fashion using different standard retrieval models on a single system, such as the Robertson BM25 probabilistic measure and a vector space measure. Our partitioned indices were each independent of each other, with independent collection statistics and lexicons. We combined the results as if all indices were the same, however, not weighing any one result set more or less than another. 1

    On Mediated Search of the United States Holocaust Memorial Museum Data

    No full text
    recently celebrated its ten-year anniversary. The museum was established to bear witness to the human atrocities committed by the Nazi reign of terror. As such, related data must be collected, and means to store, search, and analyze the data must be provided. Presently, the data available reside in various formats, sizes, and structures, in videotape and films, in microfilms and microfiche, in various incompatible structured databases, as unstructured electronic documents, and semi-structured indexes scattered throughout the organizations. Collected data are partitioned over more than a dozen languages, further complicating their processing. There is currently no single search mechanism or even department of human experts that can sift through all the data in a fashion that provides global, uniform access. We are currently experimenting with our developed Intranet Mediator technology to provide answers, rather than a potential list of sources as provided by common search engines, to questions posed in natural language by Holocaust researchers. A description of a prototype that uses a subset of the data available within the USHMM is described

    An Architectural Overview Of HydroShare, A Next-Generation Hydrologic Information System

    No full text
    HydroShare is an online, open-source, collaborative system being developed for sharing hydrologic data and models as part of the NSF’s Software Infrastructure for Sustained Innovation (SI2) program. The goal of HydroShare is to enable scientists to easily discover and access hydrologic data and models, retrieve them to their desktop, or perform analyses in a distributed computing environment that may include grid, cloud, or high performance computing. Scientists may also publish outcomes (data, results or models) into HydroShare, using the system as a collaboration platform for sharing data, models, and analyses. HydroShare involves a large distributed software development effort requiring collaboration between domain scientists, software engineers, and software developers across eight U.S. universities, RENCI, and CUAHSI. HydroShare expands the data sharing capabilities of the Hydrologic Information System of the Consortium of Universities for the Advancement of Hydrologic Sciences, Inc. (CUAHSI): It broadens the classes of data accommodated, enables sharing of models and model components, and leverages social media functionality to enhance collaboration around hydrologic data and models. The HydroShare architecture is a stack of storage and computation, web services, and user applications. A content management system, Django+Mezzanine, provides user interface, search, social media functions, and services. A geospatial visualization and analysis component enables searching, visualizing, and analyzing geographic datasets. The integrated Rule-Oriented Data System (iRODS) is used to manage federated data content and perform rule-based background actions on data and model resources, including parsing to generate metadata catalog information and the distributed execution of models and workflows. A web browser is the main interface to HydroShare, however a web services applications programming interface (API) supports access through HydroDesktop and other hydrologic modeling systems, and the architecture separates the interface layer and services layer exposing all functionality through these web services. This presentation will describe key components of HydroShare and discuss how HydroShare is designedto enable better hydrologic science concomitant with sustainable open-source software practices
    corecore