126 research outputs found

    Socially-mediated arousal and contagion within domestic chick broods

    Get PDF
    Emotional contagion – an underpinning valenced feature of empathy – is made up of simpler, potentially dissociable social processes which can include socially-mediated arousal and behavioural/physiological contagion. Previous studies of emotional contagion have often conflated these processes rather than examining their independent contribution to empathic response. We measured socially-mediated arousal and contagion in 9-week old domestic chicks (n = 19 broods), who were unrelated but raised together from hatching. Pairs of observer chicks were exposed to two conditions in a counterbalanced order: air puff to conspecifics (AP) (during which an air puff was applied to three conspecifics at 30 s intervals) and control with noise of air puff (C) (during which the air puff was directed away from the apparatus at 30 s intervals). Behaviour and surface eye temperature of subjects and observers were measured throughout a 10-min pre-treatment and 10-min treatment period. Subjects and observers responded to AP with increased freezing, and reduced preening and ground pecking. Subjects and observers also showed reduced surface eye temperature - indicative of stress-induced hyperthermia. Subject-Observer behaviour was highly correlated within broods during both C and AP conditions, but with higher overall synchrony during AP. We demonstrate the co-occurrence of socially-mediated behavioural and physiological arousal and contagion; component features of emotional contagion

    Effects of the social environment during adolescence on the development of social behaviour, hormones and morphology in male zebra finches (Taeniopygia guttata)

    Get PDF
    Abstract Background Individual differences in behaviour are widespread in the animal kingdom and often influenced by the size or composition of the social group during early development. In many vertebrates the effects of social interactions early in life on adult behaviour are mediated by changes in maturation and physiology. Specifically, increases in androgens and glucocorticoids in response to social stimulation seem to play a prominent role in shaping behaviour during development. In addition to the prenatal and early postnatal phase, adolescence has more recently been identified as an important period during which adult behaviour and physiology are shaped by the social environment, which so far has been studied mostly in mammals. We raised zebra finches ( Taeniopygia guttata ) under three environmental conditions differing in social complexity during adolescence\ua0-\ua0juvenile pairs, juvenile groups, and mixed-age groups - and studied males\u2019 behavioural, endocrine, and morphological maturation, and later their adult behaviour. Results As expected, group-housed males exhibited higher frequencies of social interactions. Group housing also enhanced song during adolescence, plumage development, and the frequency and intensity of adult courtship and aggression. Some traits, however, were affected more in juvenile groups and others in mixed-age groups. Furthermore, a testosterone peak during late adolescence was suppressed in groups with adults. In contrast, corticosterone concentrations did not differ between rearing environments. Unexpectedly, adult courtship in a test situation was lowest in pair-reared males and aggression depended upon the treatment of the opponent with highest rates shown by group-reared males towards pair-reared males. This contrasts with previous findings, possibly due to differences in photoperiod and the acoustic environment. Conclusion Our results support the idea that effects of the adolescent social environment on adult behaviour in vertebrates are mediated by changes in social interactions affecting behavioural and morphological maturation. We found no evidence that long-lasting differences in behaviour reflect testosterone or corticosterone levels during adolescence, although differences between juvenile and mixed-age groups suggest that testosterone and song behaviour during late adolescence may be associated

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Genetic Risk of Cardiovascular Disease Is Associated with Macular Ganglion Cell–Inner Plexiform Layer Thinning in an Early Glaucoma Cohort

    Get PDF
    Purpose: To evaluate the association between genetic risk for cardiovascular disease and retinal thinning in early glaucoma. Design: Prospective, observational genetic association study Participants: Multicohort study combining a cohort of patients with suspect and early manifest primary open-angle glaucoma (POAG), a cohort of patients with perimetric POAG, and an external normative control cohort. Methods: A cardiovascular disease genetic risk score was calculated for 828 participants from the Progression Risk of Glaucoma: Relevant SNPs [single nucleotide polymorphisms] with Significant Association (PROGRESSA) study. Participants were characterized as showing either predominantly macular ganglion cell–inner plexiform layer (GCIPL), predominantly peripapillary retinal nerve fiber layer (pRNFL) or equivalent macular GCIPL and pRNFL spectral-domain OCT thinning. The cardiovascular disease genetic risk scores for these groups were compared to an internal reference group of stable suspected glaucoma and of an external normative population. Replication was undertaken by comparing the phenotypes of participants from the Australia New Zealand Registry of Advanced Glaucoma (ANZRAG) with the normative control group. Main Outcome Measures: Spectral-domain OCT and Humphrey Visual Field (HVF) change. Results: After accounting for age, sex, and intraocular pressure (IOP), participants with predominantly macular GCIPL thinning showed a higher cardiovascular disease genetic risk score than reference participants (odds ratio [OR], 1.76/standard deviation [SD]; 95% confidence interval [CI], 1.18–2.62; P = 0.005) and than normative participants (OR, 1.32/SD; 95% CI, 1.12–1.54; P = 0.002). This finding was replicated by comparing ANZRAG participants with predominantly macular GCIPL change with the normative population (OR, 1.39/SD; 95% CI, 1.05–1.83; P = 0.022). Review of HVF data identified that participants with paracentral visual field defects also demonstrated a higher cardiovascular disease genetic risk score than reference participants (OR, 1.85/SD; 95% CI, 1.16–2.97; P = 0.010). Participants with predominantly macular GCIPL thinning exhibited a higher vertical cup-to-disc ratio genetic risk score (OR, 1.48/SD; 95% CI, 1.24–1.76; P < 0.001), but an IOP genetic risk score (OR, 1.12/SD; 95% CI, 0.95–1.33; P = 0.179) comparable with that of the normative population. Conclusions: This study highlighted the relationship between cardiovascular disease and retinal thinning in suspect and manifest glaucoma cases

    Learning curves for pediatric laparoscopy: how many operations are enough? The Amsterdam experience with laparoscopic pyloromyotomy

    Get PDF
    Few studies on the surgical outcomes of open (OP) versus laparoscopic pyloromyotomy (LP) in the treatment of hypertrophic pyloric stenosis have been published. The question arises as to how many laparoscopic procedures are required for a surgeon to pass the learning curve and which technique is best in terms of postoperative complications. This study aimed to evaluate and quantify the learning curve for the laparoscopic technique at the authors' center. A second goal of this study was to evaluate the pre- and postoperative data of OP versus LP for infantile hypertrophic pyloric stenosis. A retrospective analysis was performed for 229 patients with infantile hypertrophic pyloric stenosis. Between January 2002 and September 2008, 158 infants underwent OP and 71 infants had LP. The median operating time between the OP (33 min) and LP (40 min) groups was significantly different. The median hospital stay after surgery was 3 days for the OP patients and 2 days for the LP patients (p = 0.002). The postoperative complication rates were not significantly different between the OP (21.5%) and LP (21.1%) groups (p = 0.947). Complications were experienced by 31.5% of the first 35 LP patients. This rate decreased to 11.4% during the next 35 LP procedures (p = 0.041). Two perforations and three conversions occurred in the first LP group, compared with one perforation in the second LP group. The number of complications decreased significantly between the first and second groups of the LP patients, with the second group of LP patients quantifying the learning curve. Not only was the complication rate lower in the second LP group, but severe complications also were decreased. This indicates that the learning curve for LP in the current series involved 35 procedure

    Physical Activity Is Associated With Macular Thickness: A Multi-Cohort Observational Study

    Full text link
    PURPOSE. To assess the association between physical activity and spectral-domain optical coherence tomography (SD-OCT)–measured rates of macular thinning in an adult population with primary open-angle glaucoma. METHODS. The correlation between accelerometer-measured physical activity and rates of macular ganglion cell–inner plexiform layer (GCIPL) thinning was measured in 735 eyes from 388 participants of the Progression Risk of Glaucoma: RElevant SNPs with Significant Association (PROGRESSA) study. The association between accelerometer-measured physical activity and cross-sectional SD-OCT macular thickness was then assessed in 8862 eyes from 6152 participants available for analysis in the UK Biobank who had SD-OCT, ophthalmic, comorbidity, and demographic data. RESULTS. Greater physical activity was associated with slower rates of macular GCIPL thinning in the PROGRESSA study (beta = 0.07 μm/y/SD; 95% confidence interval [CI], 0.03–0.13; P = 0.003) after adjustment for ophthalmic, demographic and systemic predictors of macular thinning. This association persisted in subanalyses of participants characterized as glaucoma suspects (beta = 0.09 μm/y/SD; 95% CI, 0.03–0.15; P = 0.005). Participants in the upper tertile (greater than 10,524 steps/d) exhibited a 0.22-μm/y slower rate of macular GCIPL thinning than participants in the lower tertile (fewer than 6925 steps/d): −0.40 ± 0.46 μm/y versus −0.62 ± 0.55 μm/y (P = 0.003). Both time spent doing moderate/vigorous activity and mean daily active calories were positively correlated with rate of macular GCIPL thinning (moderate/vigorous activity: beta = 0.06 μm/y/SD; 95% CI, 0.01–0.105; P = 0.018; active calories: beta = 0.06 μm/y/SD; 95% CI, 0.006–0.114; P = 0.032). Analysis among 8862 eyes from the UK Biobank revealed a positive association between physical activity and cross-sectional total macular thickness (beta = 0.8 μm/SD; 95% CI, 0.47–1.14; P < 0.001). CONCLUSIONS. These results highlight the potential neuroprotective benefits of exercise on the human retina

    The APOE E4 Allele Is Associated with Faster Rates of Neuroretinal Thinning in a Prospective Cohort Study of Suspect and Early Glaucoma

    Full text link
    Purpose: To investigate the association between the apolipoprotein E (APOE) E4 dementia-risk allele and prospective longitudinal retinal thinning in a cohort study of suspect and early manifest glaucoma. Design: Retrospective analysis of prospective cohort data. Participants: This study included all available eyes from participants recruited to the Progression Risk of Glaucoma: Relevant SNPs [single nucleotide polymorphisms] with Significant Association (PROGRESSA) study with genotyping data from which APOE genotypes could be determined. Methods: Apolipoprotein E alleles and genotypes were determined in PROGRESSA, and their distributions were compared with an age-matched and ancestrally matched normative cohort, the Blue Mountains Eye Study. Structural parameters of neuroretinal atrophy measured using spectral-domain OCT were compared within the PROGRESSA cohort on the basis of APOE E4 allele status. Main Outcome Measures: Longitudinal rates of thinning in the macular ganglion cell–inner plexiform layer (mGCIPL) complex and the peripapillary retinal nerve fiber layer (pRNFL). Results: Rates of mGCIPL complex thinning were faster in participants harboring ≥1 copies of the APOE E4 allele (β = –0.13 μm/year; P ≤0.001). This finding was strongest in eyes affected by normal-tension glaucoma (NTG; β = –0.20 μm/year; P = 0.003). Apolipoprotein E E4 allele carriers were also more likely to be lost to follow-up (P = 0.01) and to demonstrate a thinner average mGCIPL complex (70.9 μm vs. 71.9 μm; P = 0.011) and pRNFL (77.6 μm vs. 79.2 μm; P = 0.045) after a minimum of 3 years of monitoring. Conclusions: The APOE E4 allele was associated with faster rates of mCGIPL complex thinning, particularly in eyes with NTG. These results suggest that the APOE E4 allele may be a risk factor for retinal ganglion cell degeneration in glaucoma

    Steroid Concentrations in Plasma, Whole Blood and Brain: Effects of Saline Perfusion to Remove Blood Contamination from Brain

    Get PDF
    The brain and other organs locally synthesize steroids. Local synthesis is suggested when steroid levels are higher in tissue than in the circulation. However, measurement of both circulating and tissue steroid levels are subject to methodological considerations. For example, plasma samples are commonly used to estimate circulating steroid levels in whole blood, but steroid levels in plasma and whole blood could differ. In addition, tissue steroid measurements might be affected by blood contamination, which can be addressed experimentally by using saline perfusion to remove blood. In Study 1, we measured corticosterone and testosterone (T) levels in zebra finch (Taeniopygia guttata) plasma, whole blood, and red blood cells (RBC). We also compared corticosterone in plasma, whole blood, and RBC at baseline and after 60 min restraint stress. In Study 2, we quantified corticosterone, dehydroepiandrosterone (DHEA), T, and 17β-estradiol (E2) levels in the brains of sham-perfused or saline-perfused subjects. In Study 1, corticosterone and T concentrations were highest in plasma, significantly lower in whole blood, and lowest in RBC. In Study 2, saline perfusion unexpectedly increased corticosterone levels in the rostral telencephalon but not other regions. In contrast, saline perfusion decreased DHEA levels in caudal telencephalon and diencephalon. Saline perfusion also increased E2 levels in caudal telencephalon. In summary, when comparing local and systemic steroid levels, the inclusion of whole blood samples should prove useful. Moreover, blood contamination has little or no effect on measurement of brain steroid levels, suggesting that saline perfusion is not necessary prior to brain collection. Indeed, saline perfusion itself may elevate and lower steroid concentrations in a rapid, region-specific manner

    Genomic and neural analysis of the estradiol-synthetic pathway in the zebra finch

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Steroids are small molecule hormones derived from cholesterol. Steroids affect many tissues, including the brain. In the zebra finch, estrogenic steroids are particularly interesting because they masculinize the neural circuit that controls singing and their synthesis in the brain is modulated by experience. Here, we analyzed the zebra finch genome assembly to assess the content, conservation, and organization of genes that code for components of the estrogen-synthetic pathway and steroid nuclear receptors. Based on these analyses, we also investigated neural expression of a cholesterol transport protein gene in the context of song neurobiology.</p> <p>Results</p> <p>We present sequence-based analysis of twenty steroid-related genes using the genome assembly and other resources. Generally, zebra finch genes showed high homology to genes in other species. The diversity of steroidogenic enzymes and receptors may be lower in songbirds than in mammals; we were unable to identify all known mammalian isoforms of the 3β-hydroxysteroid dehydrogenase and 17β-hydroxysteroid dehydrogenase families in the zebra finch genome assembly, and not all splice sites described in mammals were identified in the corresponding zebra finch genes. We did identify two factors, Nobox and NR1H2-RXR, that may be important for coordinated transcription of multiple steroid-related genes. We found very little qualitative overlap in predicted transcription factor binding sites in the genes for two cholesterol transport proteins, the 18 kDa cholesterol transport protein (TSPO) and steroidogenic acute regulatory protein (StAR). We therefore performed in situ hybridization for TSPO and found that its mRNA was not always detected in brain regions where StAR and steroidogenic enzymes were previously shown to be expressed. Also, transcription of TSPO, but not StAR, may be regulated by the experience of hearing song.</p> <p>Conclusions</p> <p>The genes required for estradiol synthesis and action are represented in the zebra finch genome assembly, though the complement of steroidogenic genes may be smaller in birds than in mammals. Coordinated transcription of multiple steroidogenic genes is possible, but results were inconsistent with the hypothesis that StAR and TSPO mRNAs are co-regulated. Integration of genomic and neuroanatomical analyses will continue to provide insights into the evolution and function of steroidogenesis in the songbird brain.</p
    corecore