74 research outputs found

    The Shoulder Pain and Disability Index demonstrates factor, construct and longitudinal validity

    Get PDF
    BACKGROUND: The Shoulder Pain and Disability Index (SPADI) is a self-report measure developed to evaluate patients with shoulder pathology. While some validation has been conducted, broader analyses are indicated. This study determined aspects of cross-sectional and longitudinal validity of the SPADI. METHODS: Community volunteers (n = 129) who self-identified as having shoulder pain were enrolled. Patients were examined by a physical therapist using a standardized assessment process to insure that their pain was musculoskeletal in nature. This included examination of pain reported during active and passive shoulder motion as reported on a visual analogue pain scale. Patients completed the SPADI, the Coping Strategies Questionnaire (CSQ) and the Sickness Impact Profile (SIP) at a baseline assessment and again 3 and 6 months later. Factor analysis with varimax rotation was used to assess subscale structure. Expectations regarding convergent and divergent subscales of CSQ and SIP were determined a priori and analysed using Pearson correlations. Constructed hypotheses that patients with a specific diagnosis or on pain medication would demonstrate higher SPADI scores were tested. Correlations between the observed changes recorded across different instruments were used to assess longitudinal validity. RESULTS: The internal consistencies of the SPADI subscales were high (α > 0.92). Factor analysis with varimax rotation indicated that the majority of items fell into 2 factors that represent pain and disability. Two difficult functional items tended to align with pain items. Higher pain and disability was correlated to passive or negative coping strategies, i.e., praying/hoping, catastrophizing on the CSQ. The correlations between subscales of the SPADI and SIP were low with divergent subscales and low to moderate with convergent subscales. Correlations, r > 0.60, were observed between the SPADI and pain reported on a VAS pain scale during active and passive movement. The two constructed validity hypotheses (on diagnosis and use of pain medications) were both supported (p < 0.01). The SPADI demonstrated significant changes over time, but these were poorly correlated to the SIP or CSQ suggesting that these scales measure different parameters. CONCLUSION: The SPADI is a valid measure to assess pain and disability in community-based patients reporting shoulder pain due to musculoskeletal pathology

    The elegans of spindle assembly

    Get PDF
    The Caenorhabditis elegans one-cell embryo is a powerful system in which to study microtubule organization because this large cell assembles both meiotic and mitotic spindles within the same cytoplasm over the course of 1 h in a stereotypical manner. The fertilized oocyte assembles two consecutive acentrosomal meiotic spindles that function to reduce the replicated maternal diploid set of chromosomes to a single-copy haploid set. The resulting maternal DNA then unites with the paternal DNA to form a zygotic diploid complement, around which a centrosome-based mitotic spindle forms. The early C. elegans embryo is amenable to live-cell imaging and electron tomography, permitting a detailed structural comparison of the meiotic and mitotic modes of spindle assembly

    Spindles and active vortices in a model of confined filament-motor mixtures

    Get PDF
    Background Robust self-organization of subcellular structures is a key principle governing the dynamics and evolution of cellular life. In fission yeast cells undergoing division, the mitotic spindle spontaneously emerges from the interaction of microtubules, motor proteins and the confining cell walls, and asters and vortices have been observed to self-assemble in quasi-two dimensional microtubule-kinesin assays. There is no clear microscopic picture of the role of the active motors driving this pattern formation, and the relevance of continuum modeling to filament-scale structures remains uncertain. Results Here we present results of numerical simulations of a discrete filament-motor protein model confined to a pressurised cylindrical box. Stable spindles, nematic configurations, asters and high-density semi-asters spontaneously emerge, the latter pair having also been observed in cytosol confined within emulsion droplets. State diagrams are presented delineating each stationary state as the pressure, motor speed and motor density are varied. We further highlight a parameter regime where vortices form exhibiting collective rotation of all filaments, but have a finite life-time before contracting to a semi-aster. Quantifying the distribution of life-times suggests this contraction is a Poisson process. Equivalent systems with fixed volume exhibit persistent vortices with stochastic switching in the direction of rotation, with switching times obeying similar statistics to contraction times in pressurised systems. Furthermore, we show that increasing the detachment rate of motors from filament plus-ends can both destroy vortices and turn some asters into vortices. Conclusions We have shown that discrete filament-motor protein models provide new insights into the stationary and dynamical behavior of active gels and subcellular structures, because many phenomena occur on the length-scale of single filaments. Based on our findings, we argue the need for a deeper understanding of the microscopic activities underpinning macroscopic self-organization in active gels and urge further experiments to help bridge these lengths
    corecore