7,408 research outputs found
The design and development of a spacecraft appendage tie down mechanism
The design and evolution is described of a spacecraft Appendage Tie Down Mechanism (ATDM). Particular emphasis is paid to the mechanical aspects of using dry lubricants to increase the efficiency of acme threads and worm gearing. The ATDM consists of five major components. These are a dc torque motor, a worm gear speed reducer, the tension bolt (or T-bolt), nut capture and centering jaws and the capture nut. In addition, there are several minor components such as limit switch assemblies and an antibackdrive mechanism which couples the drive motor to the worm shaft. A development model of the ATDM in various configurations was under test for some time. In its latest version, it has successfully completed thermal vacuum testing, vibration testing, and extended life testing
The Anisotropic Bak-Sneppen model
The Bak-Sneppen model is shown to fall into a different universality class with the introduction of a preferred direction, mirroring the situation in spin systems. This is first demonstrated by numerical simulations and subsequently confirmed by analysis of the multitrait version of the model, which admits exact solutions in the extremes of zero and maximal anisotropy. For intermediate anisotropies, we show that the spatiotemporal evolution of the avalanche has a power law `tail' which passes through the system for any non-zero anisotropy but remains fixed for the isotropic case, thus explaining the crossover in behaviour. Finally, we identify the maximally anisotropic model which is more tractable and yet more generally applicable than the isotropic system
Volume-controlled buckling of thin elastic shells: Application to crusts formed on evaporating partially-wetted droplets
Motivated by the buckling of glassy crusts formed on evaporating droplets of
polymer and colloid solutions, we numerically model the deformation and
buckling of spherical elastic caps controlled by varying the volume between the
shell and the substrate. This volume constraint mimics the incompressibility of
the unevaporated solvent. Discontinuous buckling is found to occur for
sufficiently thin and/or large contact angle shells, and robustly takes the
form of a single circular region near the boundary that `snaps' to an inverted
shape, in contrast to externally pressurised shells. Scaling theory for shallow
shells is shown to well approximate the critical buckling volume, the
subsequent enlargement of the inverted region and the contact line force.Comment: 7 pages in J. Phys. Cond. Mat. spec; 4 figs (2 low-quality to reach
LANL's over-restrictive size limits; ask for high-detailed versions if
required
Energy Distribution in disordered elastic Networks
Disordered networks are found in many natural and artificial materials, from gels or cytoskeletal structures to metallic foams or bones. Here, the energy distribution in this type of networks is modeled, taking into account the orientation of the struts. A correlation between the orientation and the energy per unit volume is found and described as a function of the connectivity in the network and the relative bending stiffness of the struts. If one or both parameters have relatively large values, the struts aligned in the loading direction present the highest values of energy. On the contrary, if these have relatively small values, the highest values of energy can be reached in the struts oriented transversally. This result allows explaining in a simple way remodeling processes in biological materials, for example, the remodeling of trabecular bone and the reorganization in the cytoskeleton. Additionally, the correlation between the orientation, the affinity, and the bending-stretching ratio in the network is discussed
Investing in emerging infectious diseases: a systematic analysis of UK research
Background: Emerging and infectious diseases threaten health, security, and the global economy. However, little is known about investments in research to tackle outbreaks and innovate new tools for infectious disease control.Methods & Materials: We systematically searched databases and websites for information on research investments for the period 1997-2010. We identified 325,922 studies for screening, included 6,165 studies in the initial analysis, and identified 654 studies on emerging infectious diseases in the final analysis.Results: We identified a total research investment in emerging infectious diseases of £199 million, accounting for 7.7% of a total research investment in infectious diseases of £2.6 billion. In comparison, investment in HIV research amounted to £478 million (18.4% of total investment).Diagnostic tools for control accounted for £9.8 million (4.9%) across 66 studies. Studies assessing therapeutics accounted for £20.0 million (9.9%) across 35 studies. Vaccine research attracted the least funding for tools to tackle emerging infectious diseases, with £11.5 million (5.8%) across 24 studies.Hepatitis C received the most investment with £59.7 million (30.0%), followed by prion research with £33.5 million (16.8%), Campylobacter jejuni with £24.1 million (12.1%), and Helicobacter pylori with £15.1 million (7.6%). Although total influenza investment was £80.1 million, funding specifically for H5N1 influenza virus was £13.7 million (6.9%) and for H1N1 influenza virus was £10.8 million (5.4%).Public funding accounted for £144.0 million (72.3%) across 361 studies with philanthropic funding awarding £40.6 million (20.4%) across 173. Preclinical research attracted the most investment with £142.4 million (71.5%) followed by epidemiological and operational research with £42.1 million (21.2%) and product development research with £12.2 million (6.1%). Phase 1, 2, 3 clinical trials was the least well-funded type of research with £2.5 million (1.2%).Conclusion: Emerging infectious diseases receives small amounts of funding compared to other scientific disciplines, with the exception of HIV. It is essential that we map, monitor and evaluate emerging infectious disease research funding given their importance to global health security
Elasticity of Stiff Polymer Networks
We study the elasticity of a two-dimensional random network of rigid rods
(``Mikado model''). The essential features incorporated into the model are the
anisotropic elasticity of the rods and the random geometry of the network. We
show that there are three distinct scaling regimes, characterized by two
distinct length scales on the elastic backbone. In addition to a critical
rigidiy percolation region and a homogeneously elastic regime we find a novel
intermediate scaling regime, where elasticity is dominated by bending
deformations.Comment: 4 pages, 4 figure
Kinetics of catalysis with surface disorder
We study the effects of generalised surface disorder on the monomer-monomer
model of heterogeneous catalysis, where disorder is implemented by allowing
different adsorption rates for each lattice site. By mapping the system in the
reaction-controlled limit onto a kinetic Ising model, we derive the rate
equations for the one and two-spin correlation functions. There is good
agreement between these equations and numerical simulations. We then study the
inclusion of desorption of monomers from the substrate, first by both species
and then by just one, and find exact time-dependent solutions for the one-spin
correlation functions.Comment: LaTex, 19 pages, 1 figure included, requires epsf.st
Modeling the elastic deformation of polymer crusts formed by sessile droplet evaporation
Evaporating droplets of polymer or colloid solution may produce a glassy
crust at the liquid-vapour interface, which subsequently deforms as an elastic
shell. For sessile droplets, the known radial outward flow of solvent is
expected to generate crusts that are thicker near the pinned contact line than
the apex. Here we investigate, by non-linear quasi-static simulation and
scaling analysis, the deformation mode and stability properties of elastic caps
with a non-uniform thickness profile. By suitably scaling the mean thickness
and the contact angle between crust and substrate, we find data collapse onto a
master curve for both buckling pressure and deformation mode, thus allowing us
to predict when the deformed shape is a dimple, mexican hat, and so on. This
master curve is parameterised by a dimensionless measure of the non-uniformity
of the shell. We also speculate on how overlapping timescales for gelation and
deformation may alter our findings.Comment: 8 pages, 7 figs. Some extra clarification of a few points, and minor
corrections. To appear in Phys. Rev.
Fuzzy splicing systems
In this paper we introduce a new variant of splicing systems, called fuzzy splicing systems, and establish some basic properties of language families generated by this type of splicing systems. We study the “fuzzy effect” on splicing operations, and show that the “fuzzification” of splicing systems can increase and decrease the computational power of splicing systems with finite components with respect to fuzzy operations and cut-points chosen for threshold languages
European Dissemination of the Ultra-low Temperature Scale, PLTS-2000
Following the introduction of the provisional low-temperature scale from 0.9 mK to 1K, PLTS-2000, there is a need for primary and secondary thermometers and fixed points, which can disseminate the scale to users. This paper reports on the progress, within the EU collaborative project ‘ULT Dissemination’, in the development and evaluation of several devices with associated instrumentation. Principal among them are a current-sensing noise thermometer, a CMN thermometer adapted for industrial use, a Coulomb blockade thermometer, a second-sound thermometer, a 3He melting pressure thermometer for a direct realisation of the PLTS-2000. A superconductive reference device has also been developed, as a replacement for the NBS SRM-768 which is no longer available
- …