5,147 research outputs found

    Inverse Geometry Design of Radiative Enclosures Using Particle Swarm Optimization Algorithms

    Get PDF
    Three different Particle Swarm Optimization (PSO) algorithms—standard PSO, stochastic PSO (SPSO) and differential evolution PSO (DEPSO)—are applied to solve the inverse geometry design problems of radiative enclosures. The design purpose is to satisfy a uniform distribution of radiative heat flux on the designed surface. The design surface is discretized into a series of control points, the PSO algorithms are used to optimize the locations of these points and the Akima cubic interpolation is utilized to approximate the changing boundary shape. The retrieval results show that PSO algorithms can be successfully applied to solve inverse geometry design problems and SPSO achieves the best performance on computational time. The influences of the number of control points and the radiative properties of the media on the retrieval geometry design results are also investigated

    WNT/β-catenin signaling promotes VSMCs to osteogenic transdifferentiation and calcification through directly modulating Runx2 gene expression

    Get PDF
    AbstractArterial medial calcification (AMC) is prevalent in patients with chronic kidney disease (CKD) and contributes to elevated risk of cardiovascular events and mortality. Vascular smooth muscle cells (VSMCs) to osteogenic transdifferentiation (VOT) in a high-phosphate environment is involved in the pathogenesis of AMC in CKD. WNT/β-catenin signaling is indicated to play a crucial role in osteogenesis via promoting Runx2 expression in osteoprogenitor cells, however, its role in Runx2 regulation and VOT remains incompletely clarified. In this study, Runx2 was induced and β-catenin was activated by high-phosphate in VSMCs. Two forms of active β-catenin, dephosphorylated on Ser37/Thr41 and phosphorylated on Ser675 sites, were upregulated by high-phosphate. Activation of β-catenin, through ectopic expression of stabilized β-catenin, inhibition of GSK-3β, or WNT-3A protein, induced Runx2 expression, whereas blockade of WNT/β-catenin signaling with Porcupine (PORCN) inhibitor or Dickkopf-1 (DKK1) protein inhibited Runx2 induction by high-phosphate. WNT-3A promoted osteocalcin expression and calcium deposition in VSMCs, whereas DKK1 ameliorated calcification of VSMCs induced by high-phosphate. Two functional T cell factor (TCF)/lymphoid enhancer-binding factor binding sites were identified in the promoter region of Runx2 gene in VSMCs, which interacted with TCF upon β-catenin activation. Site-directed mutation of each of them attenuated Runx2 response to β-catenin, and deletion or destruction of both of them completely abolished this responsiveness. In the aortic tunica media of rats with chronic renal failure, followed by AMC, Runx2 and β-catenin was induced, and the Runx2 mRNA level was positively associated with the abundance of phosphorylated β-catenin (Ser675). Collectively, our study suggested that high-phosphate may activate WNT/β-catenin signaling through different pathways, and the activated WNT/β-catenin signaling, through direct downstream target Runx2, could play an important role in promoting VOT and AMC

    The significance of the crosstalk between ubiquitination or deubiquitination and ncRNAs in non-small cell lung cancer

    Get PDF
    Lung cancer (LC) remains the leading cause of cancer-related deaths worldwide, with extremely high morbidity and mortality rates. Non-small cell lung cancer (NSCLC) is the most critical type of LC. It seriously threatens the life and health of patients because of its early metastasis, late clinical symptoms, limited early screening methods, and poor treatment outcomes. Non-coding RNAs (ncRNAs), including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular RNAs (circRNAs), participate in cell proliferation, metastasis, and chemoresistance. Several previous studies have proven that ncRNAs are vital regulators of tumorigenesis. Ubiquitination plays the most crucial role in protein post-translational modification (PTM). Deubiquitination and ubiquitination form a homeostasis. In summary, ubiquitination and deubiquitination play essential roles in mediating the degradation or overexpression of a range of crucial proteins in various cancers. A growing number of researchers have found that interactions between ncRNAs and ubiquitination (or deubiquitination) play a crucial role in NSCLC. This review presents several typical examples of the important effects of ncRNAs and ubiquitination (or deubiquitination) in NSCLC, aiming to provide more creative ideas for exploring the diagnosis and treatment of NSCLC
    corecore