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Lung cancer (LC) remains the leading cause of cancer-related deaths worldwide,

with extremely high morbidity and mortality rates. Non-small cell lung cancer

(NSCLC) is the most critical type of LC. It seriously threatens the life and health of

patients because of its early metastasis, late clinical symptoms, limited early

screening methods, and poor treatment outcomes. Non-coding RNAs (ncRNAs),

including microRNAs (miRNAs), long non-coding RNAs (lncRNAs), and circular

RNAs (circRNAs), participate in cell proliferation, metastasis, and chemoresistance.

Several previous studies have proven that ncRNAs are vital regulators of

tumorigenesis. Ubiquitination plays the most crucial role in protein post-

translational modification (PTM). Deubiquitination and ubiquitination form a

homeostasis. In summary, ubiquitination and deubiquitination play essential roles

in mediating the degradation or overexpression of a range of crucial proteins in

various cancers. A growing number of researchers have found that interactions

between ncRNAs and ubiquitination (or deubiquitination) play a crucial role in

NSCLC. This review presents several typical examples of the important effects of

ncRNAs and ubiquitination (or deubiquitination) in NSCLC, aiming to provide more

creative ideas for exploring the diagnosis and treatment of NSCLC.
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1 Introduction

Many well-known international studies have confirmed that cancer is the primary cause

of premature death. Lung cancer still ranks first in terms of fatality rate (18.0%) and is the

second most diagnosed cancer (11.4%) (1).Based on histopathological characteristics, lung

cancer can be divided into small-cell lung cancer (SCLC) and non-small cell lung cancer

(NSCLC). NSCLC accounts for up to 85% of lung cancer (2). The latest advances in

diagnostic tools and systematic treatment methods have improved the therapeutic effect of

NSCLC, with a 5-year survival rate of 33% for regional-stage disease and 60% for localized-

stage disease. However, owing to the characteristics of early metastasis and late clinical

symptoms, the 5-year survival rate of patients with distant metastasis is only 6% (3).
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Therefore, early detection, diagnosis, and treatment are essential for

prolonging the survival time of NSCLC patients.

The Human Genome Project found that genes encoding proteins

account for only 2% of the human genome, and most of the remaining

human transcriptomes are ncRNAs (4). The vast number of ncRNAs

was once considered non-functional “garbage” until the ENCODE

project showed that the non-protein-coding parts of genes could be

copied into thousands of RNA molecules, which regulate

fundamental biological processes and play vital roles in the entire

human disease spectrum. However, the boom in ncRNA research has

only begun (5). There are many types of ncRNAs, and current

research mainly focuses on microRNAs (miRNAs), long non-

coding RNAs (lncRNAs), and circular RNAs (circRNAs).

MiRNAs are small RNAs of approximately 22 nucleotides that

regulate the expression of specific genes by pairing them completely

or incompletely with the 3’-UTR region of the mRNA of the target

genes to degrade mRNAs or inhibit their post-transcriptional

translation (6). MiRNAs are typically processed in the nucleus by

RNA polymerase II (polII) and Drosha as precursor miRNAs (pri-

miRNAs), which are then exported to the cytoplasm and cleaved into

double-stranded RNA by the RNase III enzyme, Dier. One of the

strands was then selected and incorporated into a miRNA-induced

silencing complex (miRISC). Complementary miRNA and mRNA

usually lead to the degradation of the target mRNA. However, when

not entirely complementary, miRNAs usually prevent the expression

of target genes at the protein level without influencing mRNA stability

(7). MiRNAs are often heavily dysregulated and function as

oncogenes or tumor suppressors in cancer cells. MiRNAs can act as

diagnostic and prognostic markers, which bring vast attention to

cancer diagnosis and treatment (8, 9).

LncRNAs are non-coding RNAs that are longer than 200

nucleotides and have 5’-modified caps and 3’-polyadenylated tails.

LncRNAs are closely related to their cellular localization and play

essential roles in almost all phases of gene regulation (10). LncRNAs

affect chromatin and transcription levels in the nucleus, leading to

post-transcriptional regulation in the cytoplasm. In addition, they

regulate fine-tuning of the translation process and RNA molecules

directly or indirectly by affecting the expression of upstream or

downstream genes (11). In terms of mechanisms of action, decoy

lncRNAs can bind proteins or RNAs, resulting in the negative

regulation of protein expression. In addition, guide lncRNAs direct

protein localization by binding to proteins and signal lncRNAs to

interact with transcription factors or chromatin-modifying enzymes,

resulting in the regulation of transcription and signaling pathways.

Lastly, scaffold lncRNAs act as organizing structures where molecules

can bind and interact with each other more efficiently (12). Aberrant

expression of numerous lncRNAs participates in several types

of carcinogenesis.

CircRNAs are a class of endogenous RNAs that regulate gene

expression, and the 3’ and 5’ ends of circRNAs are covalently bound

by trans-splicing to form a closed circular structure. Unlike linear

RNA structures, circRNAs do not have 5 ’-3’ polarity or

polyadenylated tails, which makes them more stable (13). As a

result, circRNAs can resist the decomposition of RNase enzymes

and have higher sequence conservation, abundance, and tissue

specificity (14). CircRNAs mainly work through four molecular

mechanisms. First, circRNAs can act as competing endogenous
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RNAs (ceRNAs) of miRNAs. Second, circRNAs interact with RNA-

binding proteins (RBPs) to regulate the mRNA of many genes. Third,

a balance exists between linear RNAs and circRNAs through

competitive complementary pairing. Fourth, although circRNAs are

non-coding RNAs, some circRNAs can perform regulatory functions

through translation (15). CircRNAs affect all aspects of the occurrence

and development of different cancers.

The ubiquitin-proteasome system (UPS) is a critical PTM of

proteins that regulates protein degradation and maintains protein

homeostasis (16). The UPS consists of many key components,

including ubiquitin(Ub), a highly conserved 76-amino-acid protein

that conjugates other cellular proteins and modifies them (17). In

addition, the UPS consists of deubiquitinating enzymes (DUBs) and a

three-enzyme cascade involving ubiquitin-activating enzymes (E1s),

ubiquitin-conjugating enzymes (E2s) and ubiquitin ligases (E3s) (18).

Deubiquitination can remove mono Ub or the whole polyubiquitin

chains on proteins to resist the protein’s degradation or the alteration

of the subcellular position (19). Also included in the UPS is the 26S

proteasome, which mainly consists of two parts: a 20S core particle

(CP) complex, where protein degradation mainly occurs, and a 19S

regulatory particle (RP), responsible for the substrate choosing the

right degradation site (20). Usually, E1 activates Ub in an ATP-

dependent manner. The activated Ub is then moved to E2 through a

transthiolation reaction. The E3 and substrate protein complex

acquire Ub from E2, and Ub targets the protein. Alternatively, Ub

is moved to E3 through a transthiolation reaction, E3 recognizes the

protein specifically, and the C-terminal of Ub is attached to the Lys

residue of the target protein (21). In humans, two E1s, 38 E2s, and

approximately 600–1000 E3s have been found so far (22). Studies

have found that ubiquitination and deubiquitination reactions are

responsible for developing various tumors and play key roles in

cancer treatment (23). The ubiquitinization and deubiquitination

process is shown in the Figure 1.
2 ncRNAs and NSCLC

NcRNAs participate in all aspects of NSCLC occurrence and

development and play an essential role in NSCLC diagnosis and

treatment. Parts of the crucial ncRNAs are enumerated in this review

to explain their critical role in NSCLC.
2.1 miRNA and NSCLC

Dysregulation of miRNAs causes abnormal expression of target

genes and influences every aspect of NSCLC. Numerous studies have

verified that miRNAs influence NSCLC through cell growth, cell

cycle, apoptosis, metastasis, immune escape, and drug resistance (24).

In 2004, let-7 was reported to have low expression in NSCLC

causing cell growth inhibition, and was associated with shortened

postoperative survival (25). The let-7 family inhibits tumor growth

and metastasis in lung adenocarcinoma through the MAPK/ERK and

Wnt/b-catenin pathways (26, 27). let-7 has a strong relationship with

drug resistance by targeting different proteins or regulating other

factors. Cancer stem cells (CSCs) have stem cell-like characteristics

that enable the growth of tumor cells, which is closely related to tumor
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treatment resistance (28). Lin28 is a highly conserved RNA-binding

protein that induces pluripotent stem cell differentiation. The double

negative feedback loop established by let-7 and Lin28 significantly

influences NSCLC chemotherapy and radiation therapy resistance

(29, 30). A recent study found that metformin could increase mature

let-7b expression by mediating m6A formation on pri-let-7b and

enforce osimertinib sensitivity by decreasing the expansion of stem

cell groups (31).

MiR-21 is one of cancer research’s first identified “miRNA

enhancers” (32). All cells in the human body can produce

extracellular vesicles (EVs), which are membranous vesicles released

into the extracellular matrix. Exosomes are EVs with diameters

ranging between 30 and 150 nm. The molecular content of

exosomes, including nucleic acids, proteins, and lipids, has an

important influence on various cells. Therefore, exosomal ncRNAs

and their pathophysiological roles significantly impact NSCLC (33).

MiR-21 was significantly higher in sputum and plasma samples from

patients with NSCLC than healthy donors. Thus, in addition to

promoting growth and invasion phenotypes, miR-21 is a non-

invasive biomarker for NSCLC diagnosis (32, 34). Recent studies

have focused on the combined effects of let-7 and miR-21. Bai et al.

found that the simultaneous downregulation of miR-21 and

upregulation of let-7 could inhibit NSCLC development. This

finding indicates a feedback regulation loop between miR-21 and

let-7, with K-Ras as the target gene (35). This study also looks at the

combined effects of miRNAs, which could be significant in

NSCLC research.

The characteristics of early metastasis make NSCLC survival rates

extremely low. Epithelial-mesenchymal transition (EMT) is a typical

change in the invasiveness and migratory abilities of tumor cells.

Accompanied by converting epithelial cells to mesenchymal cells,

epithelial cells lose cell-cell adhesion, have increased motility, and
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have altered the expression of some key genes (36). The miR-200

family includes five conserved miRNAs: miR-200a, miR-200b, miR-

200c, miR-141, and miR-429. MiR-200 is a well-known tumor

suppressor that inhibits EMT in various cancers. Previous studies

have found that the typical EMT regulator, miR-200/ZEB1 axis,

regulates ECM-dependent b1-integrin/FAK signaling in NSCLC

through CRKL. In addition, previous studies further explored the

intracellular signaling pathways in NSCLC responsible for tumor cell

invasion and metastasis through the EMT activation (37). At the same

time, a novel double-negative feedback loop between FOXF2 and

miR-200 was discovered, revealing a parallel axis to miR-200/ZEB1

that controls cancer cell invasion and migration through the EMT

(38). In addition to influencing invasion and metastasis, the EMT can

also mediate drug resistance. A study found that Cathepsin L (CTSL)

and miRNA-200c suppress each other and mediate paclitaxel

resistance through EMT changes (39). Moreover, new research

found that miRNA-200c could downregulate Lin28B and improve

EMT-related EGFR tyrosine kinase inhibitor (TKI) resistance in

NSCLC (40). MiR-200s and let-7s have multiple members that

regulate overlapping target sets.

Three typical miRNAs in NSCLC and three research suggestions

regarding the correlation between miRNAs and NSCLC are provided.

First, early NSCLC diagnosis is critical for mortality reduction

because more miRNAs function as exosomes. Second, miRNAs are

prone to develop drug resistance during NSCLC treatment, as they

can modulate drug resistance through many methods. Therefore,

research should improve the efficiency of NSCLC treatment. Last but

not least, miRNAs can be the enhancer or suppressor of NSCLC. In

addition, several miRNAs have the same target genes. Thus, the

overlapping effects of these miRNAs in NSCLC, which play a leading

role, are expected to provide new insights into future research

on NSCLC.
2.2 lncRNA and NSCLC

To date, numerous lncRNAs have been identified in NSCLC.

Similarly, the effects of lncRNAs on the various stages of NSCLC

development have received widespread attention. This paper clarifies

the reciprocal of lncRNAs and NSCLC and future research directions

by enumerating classic lncRNAs that have been identified.

The metastasis-associated lung adenocarcinoma transcript 1

(MALAT1), also known as nuclear-enriched abundant transcript 2

(NEAT2), is the first lncRNA to be studied in NSCLC. It is

upregulated in tumor tissues of NSCLC and is considered a specific

marker for NSCLC (41). LncRNAs can regulate the biological

functions of NSCLC through many mechanisms; the most common

regulating method is by acting as endogenous miRNA sponges.

Several miRNAs are sponged by MALAT1 and regulate functions,

including cell proliferation, differentiation, and development, through

competing with mRNAs. For example, miR-1297 binding to

MALAT1 was predicted using software and confirmed by luciferase

reporter assays. P300 is the downstream target molecule of MALAT1

and miR-1297. The P300/b-catenin complex is essential for activating

the Wnt pathway during transcriptional activity (42). In addition, the

Wnt signaling pathway is closely related to drug resistance. Therefore,

through inhibiting MALAT1/miR-1297/p300/b-catenin/Wnt
FIGURE 1

A brief overview of the ubiquitination and deubiquitination circulation.
The Ub is respectively activated by the E1 Ub-activating enzyme,
conjugated to the E2 Ub-conjugating enzyme, and attached to a
specific substrate selected by E3 Ub ligase. The ubiquitinated proteins
can be degraded by the proteasome. The deubiquitinase can remove Ub
from substrate. Those released Ub participates in ubiquitination again.
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signaling, the A549/DDP cells were re-sensitized. Asiatic acid can

achieve this regulation (43). Similarly, the MALAT1/miR-27a-5p/

PBOV1 axis was recently found to enhance gemcitabine resistance in

NSCLC cells (44). In addition to being a ceRNA, MALAT1 is also

involved in regulating NSCLC through other mechanisms. IGF2BP2

promotes MALAT1 stability via m6A modification and promotes the

proliferation of NSCLC cells through the MALAT1/ATG12 axis (45).

Furthermore, MALAT1 is an important circulating diagnostic

biomarker for diagnosing NSCLC (46). The single nucleotide

polymorphism (SNP) in MALAT1, rs3200401, has been associated

with NSCLC susceptibility, which is essential for identifying early

screening populations for NSCLC (47).

LncRNA H19 (referred to as H19) is another classic lncRNA that

can influence NSCLC. LncRNA H19 is encoded by H19 protein and is

highly expressed in NSCLC tissues and cells. FOXF2 has been certified

as one of the promoters to accelerate H19 transcription. Upregulated

H19 can promote the proliferation and migration of NSCLC through

the EZH2/PTEN axis (48). H19 decreased the overall survival of

NSCLC patients, the combination of H19 and miR-21 played

important roles in diagnostic and treatments value in NSCLC (49).

In addition, H19 can also act as a sponge for several microRNAs

(miRNAs). For example, downregulating H19 can significantly inhibit

EMT progression through the upregulation of miR-203 in NSCLC

(50). As for drug resistance, related research found that H19 could be

secreted into exosomes assisted by heterogeneous nuclear

ribonucleoprotein A2/B1 (HNRNPA2B1) and induce gefitinib

resistance in NSCLC cells (51). The latest study confirmed that

exosomal H19 promotes erlotinib resistance via the miR-615-3p/

ATG7 axis (52). H19 can also regulate the radiosensitivity of NSCLC

cells. Radiotherapy (RT) is a crucial treatment modality.

Theoretically, higher doses of radiation have a better effect on

radiotherapy; however, related side effects may gradually appear.

Therefore, it is essential to enhance radiosensitivity. Zhao et al.

found that the H19 sponge miR-130a-3p increased the expression

of WNK lysine deficient protein kinase 3 (WNK3) and elevated

radiosensitivity to X-rays in NSCLC cells (53). Moreover, SNPs in

H19 were associated with NSCLC susceptibility (54).

LncRNA-MEG3 is a representative inhibitory lncRNA in NSCLC.

Tumor-suppressive lncRNAs inhibit carcinogenesis and progression

by enhancing apoptosis via several methods. MEG3 induces apoptosis

and inhibits proliferation by activating p53 (55). The upregulation of

MEG3 inhibits stem cell-like characteristics and prevents metastasis

in NSCLC through miR-650/SLC34A2 (56). As for therapeutic

aspects, MEG3 might enhance cisplatin sensitivity via different

signaling pathways (57, 58). Autophagy refers to a lysosome-

mediated catabolic process and is a double-edged sword for NSCLC

that can regulate the development of NSCLC through different

proteins and signaling pathways. On the one hand, autophagy

restrains tumorigenesis by removing harmful cytotoxic agents to

reduce stress injury, prevent genome damage, and maintain cellular

integrity (59). Wang et al. found that MEG3 influences autophagy by

regulating the miR-543/IDO axis (60). On the other hand, the MEG3

rs4081134 polymorphism has been associated with NSCLC

susceptibility in the Chinese population (61).

Considering the current research on lncRNAs and NSCLC, it can

be concluded that lncRNAs regulate the progression of NSCLC

through multiple mechanisms. Therefore, lncRNAs play a key role
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in the diagnosis and treatment outcomes of NSCLC. In addition,

SNPs in a few classic lncRNAs are closely related to NSCLC

susceptibility, which is of great significance for early lung

cancer screening.
2.3 circRNA and NSCLC

Extensive research was only conducted on circRNAs after

lncRNAs and miRNAs. However, due to their more stable

characteristics, research on NSCLC and circRNAs is very

prosperous, and the related mechanistic studies are more detailed

and in-depth.

As mentioned above, exosomes can be used as diagnostic markers

to regulate drug resistance and can be key factors in promoting the

progression of NSCLC. More than 1000 exosomal circRNAs have

been discovered in human serum, much more than linear RNAs.

These exosomal circRNAs have a significant effect on NSCLC. For

example, three circRNAs, circ_0047921, circ_0056285, and

circ_0007761, were found as exosomal circRNAs in NSCLC

patients’ serum exosomes, and could perfectly distinguish early-

stage NSCLC and other lung diseases, such as pulmonary

tuberculosis, in healthy people (62). Therefore, circRNAs have

become excellent non-invasive diagnostic biomarkers for NSCLC.

Moreover, several exosomal circRNAs have been found to regulate

resistance to chemotherapy and radiotherapy in NSCLC. Exosomal

circ_0001658 has been found to sponge miR-409-3p and increase

TWIST1 expression to promote gefitinib resistance in NSCLC (63).

The exosomal circUSP7 modulates the miR-934/SHP2 axis to induce

anti-PD1 resistance and promote immune escape in NSCLC (64).

Controlling tumor cell escape is crucial for improving

radiotherapy sensitivity.

The tumor microenvironment (TME) includes a variety of cells

and structures surrounding tumor cells. TME cells undergo metabolic

modifications and regulate drug resistance (65). Recent studies have

revealed the relationship between circRNAs and altered metabolism,

which could assist in addressing the progression and drug

insensitivity of NSCLC. The expression of circ_0008797 is low in

NSCLC tissues and cell lines, which could attenuate proliferation,

metastasis, and aerobic glycolysis by regulating miR-301a-3p/SOCS2

(66). The downregulation of circ_0011298 enhances the Taxol

sensitivity of Taxol-resistant NSCLC cells by decreasing cell growth,

metastasis, and glycolysis and promoting apoptosis and cell cycle

arrest via the miR-486-3p/CRABP2 axis (67). In addition,

circSLC25A16 and circPIP5K1A can induce hypoxia-inducible

factor (HIF)-1a-dependent glycolysis by sponging miRNAs (68, 69).

The induction of programmed cell death (PCD) is the primary

mechanism leading to tumor cell death. Pyroptosis, autophagy, and

ferroptosis are novel and essential methods for inducing PCD.

CircRNAs have an intimate relationship with PCD (70). A current

study found that circDTL functions as an oncogene and the

knockdown of circDTL could improve the efficacy of chemotherapy

drugs, ferroptosis, and apoptosis of NSCLC cells through the miR-

1287-5p/GPX4 axis (71). CircRNAs can regulate autophagy by

directly targeting key proteins or signaling pathways related to

autophagy. Hsa_circ_0085131 functions as a ceRNA and enhances

cisplatin resistance of NSCLC cells by upregulating the autophagy-
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associated factor, ATG7, leading to autophagy of tumor cells (72).

Similarly, circ_FOXM1 can lead to autophagy by sequestering miR-

149-5p and upregulating ATG5 (73). In addition, some bioinformatic

predictions have identified six circRNAs that regulate autophagy

proteins by sponging miRNAs and enhancing the sensitivity of

NSCLC to radiotherapy (74). Future experiments are expected to

verify these predictions.

This paper did not enumerate the classic circRNAs to clarify their

relationship with NSCLC. Although the research on circRNA is

limited, many circRNAs have been found to influence NSCLC by

regulating factors, including metabolism, TME, and autophagy. These

are novel and popular NSCLC mechanism studies. Therefore,

circRNAs are bound to be excellent research objects for diagnosing

and treating NSCLC or exploring new mechanism targets

and networks.
3 The UPS and NSCLC

During ubiquitination and deubiquitination in NSCLC, the E3

ligases and the DUBs play crucial roles in regulating protein stability

that influences the progression of NSCLC. Therefore, E3 ligases and

DUBs illustrated the relationship between ubiquitination,

deubiquitination, and NSCLC.
3.1 E3 ligases and NSCLC

The superfamily of tripartite motif proteins (TRIM) are proteins

containing an N-terminal RING finger, a coiled-coil (CC) domain,

and one or two B-boxes (75). The RING domain is responsible for

conjugations with ubiquitin or ubiquitin-like molecule, including

interferon-stimulated gene15 (ISG15) and small ubiquitin-like

modifier (SUMO). The C-terminal domains can categorize TRIM

proteins and recognize and regulate substrate proteins (76). Many

TRIM proteins have been found to regulate the development and

treatment of NSCLC by targeting different proteins and signaling

pathways (77). TRIM59 expression in NSCLC patients was two to

three fold higher than in normal patients; these patients had worse

survival outcomes suggesting that TRIM59 might be a novel

biomarker for NSCLC diagnosis (78).

Similarly, DNA hypermethylation of TRIM58 was upregulated in

NSCLC tissues and presented promising results in Area Under Curve

(AUC) when discriminating between NSCLC and control groups

(79). The TRIM family also affects drug resistance in NSCLC.

TRIM46 promotes cell proliferation, glycolysis, and DDP in NSCLC

by upregulating HK2 via AKT phosphorylation and PHLPP2

ubiquitination by interaction with TRIM46 is the key method for

inducing p-AKT (80). TRIM23 was highly expressed in DDP-

resistant lung adenocarcinoma (LUAD) cells and tissues. A

mechanistic study suggested that TRIM23 could ubiquitinate

proteins to activate the NF‐kB pathway and further regulate glucose

metabolism in DDP cells (81). In addition to the TRIM family, many

other classic E3 ligases participate in regulating NSCLC. Ubiquitin-

conjugating enzyme E2O (UBE2O), an E2/E3 hybrid ubiquitin-

protein ligase, targets MAX-interacting protein 1 (Mxi1) for
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ubiquitination and degradation at the K46 residue, which can

suppress the occurrence of NSCLC and enhance radiosensitivity

(82). Another E3 ligase, MIB1, stimulates the degradation of the

antioxidant transcription factor, nuclear factor erythroid 2-related

factor 2 (Nrf2), in a ubiquitin manner and induces them to be more

sensitive to ferroptosis (83).
3.2 DUBs and NSCLC

Ubiquitin-specific proteases (USPs) are the most versatile class of

known deubiquitinases with the most diverse structures that remove

Ub from proteins. Among currently available research, USPs regulate

multiple known NSCLC-related pathways (84). Knocking out the

USP1 could lead to hypersensitivity DNA damage. Recent studies

have found that inhibiting the activity of the USP1/UAF1 complex

can improve cisplatin sensitivity in NSCLC (85). USP18 removes the

conjugate of interferon-induced Ubl ISG15 and inhibits 14-3-3z
acetylation by ISG15 to accelerate NSCLC metastasis (86).

Additionally, USP35 targeted ferroportin and induced ferroptosis in

NSCLC (87). USP5 increased PD-L1 levels by cleaving and stabilizing

the polyubiquitin chain and maintaining stability. Thus, USP5

knockdown might prevent immune response and drug resistance by

reducing PD-L1 protein (88). OTU deubiquitinase 3 (OTUD3) binds

to the ovarian tumor-related protease family, PTEN protector.

OTUD3 is a potential tumor suppressor in NSCLC, a

deubiquitylase of GRP78, and promotes tumorigenesis of NSCLC

(89). Ubiquitin C-terminal hydrolase-L3 (UCHL3) belongs to the

ubiquitin COOH-terminal hydrolase family, and its high expression is

associated with poor survival in LUAD. In addition, UCHL3

promotes the proliferation and stem cell traits of NSCLC cells by

deubiquitinating Aryl hydrocarbon receptor (AhR) (90).

The number of E3 ligases and DUBs is enormous. They target key

proteins in NSCLC by inducing ubiquitination or deubiquitination of

these proteins or further regulating post-modifications of other

proteins to regulate the progression of NSCLC. Therefore, the

balance between ubiquitination and deubiquitination plays a crucial

role in proliferation, metastasis, apoptosis, the cell cycle, immune

escape, and drug resistance in NSCLC.
4 Interaction between UPS and
regulatory ncRNAs in NSCLC

The ncRNA and the UPS systems have huge members and diverse

control methods, which is why they became key regulators of NSCLC.

Many studies focused on the interactions between ncRNAs and the

UPS in NSCLC. However, compared to the vast number of these two

systems, interaction research was fairly small. Recent studies have

shown that ncRNAs could act on critical Ub-enzymes, other essential

proteins, and pathways to regulate the development of NSCLC.

Furthermore, certain ubiquitination and deubiquitination processes

can conversely regulate ncRNAs. Such crosstalk between ncRNAs and

ubiquitination or deubiquitination is significant and may even lead to

breakthroughs in further NSCLC studies. Next, the necessity of

research on crosstalk is illustrated by providing classic examples.
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Several studies have been conducted on the let-7 family and the

UPS. Histones, H2A and H2B, have monoubiquitination sites at their

lysines, and K120 is the only site of H2B monoubiquitination that

promotes the occurrence of H2Bub1. H2Bub1 functions as a tumor

suppressor in lung cancer and can be catalyzed by the E3 ubiquitin-

ligase complex, RNF20/RNF40, and erased by various DUBs (91).

Ambra et al. performed a bioinformatic screen to identify the effects

of miRNAs on H2Bub1 homeostasis. The results showed that let-7b

targeted USP42, USP44, and ATXN7L3. USP42 and USP44 were

reported to act on H2Bub1, while ATXN7L3 could remove H2Bub1

through the activity of USP22. Further experimental data showed that

let-7b and let-7c significantly reduced the steady-state mRNAs and

ATXN7L3 and USP42 protein levels but did not influence RNF20

protein levels. The results showed that the let-7 family members,

especially let-7b and let-7c, could positively regulate H2Bub1.

Further, RNA pull-down assays strongly supported that ATXN7L3,

USP44, and USP42 were enriched by pulling down let-7b and were

the direct let-7b targets. Altogether, these findings suggest that the let-

7 family could prevent the ubiquitination of H2B by directly

regulating DUBs to prevent the migration of NSCLC (92).

Epidermal growth factor receptor (EGFR)-TKIs can induce drug

resistance by elevating autophagic flux (93). One study found that

miR-4487 expression increased in NSCLC cells treated with gefitinib.

Subsequently, miR-4487 targeted USP37 directly and downregulated

USP37 expression. These results led to whole-cell ubiquitination and

increased autophagic flux, which also allowed the observation of

miRNAs’ effects on NSCLC resistance by regulating deubiquitination

and autophagy (94). Previous studies have suggested that KRAS

mutations might promote tumor cell growth by inducing DNA

damage and genotoxic stress. As a highly conserved recombinase,

RAD51 may repair DNA damage caused by KRAS-MT and improve

resistance to radiation (95). MiR-376a-5p acts as an upstream

regulator of TRIM36; knockdown of miR-376a-5p upregulates

TRIM36. Elevated levels of TRIM36 can inhibit DNA repair and

promote radiosensitivity (96). Cullin 4B (CUL4B) belongs to the
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cullin family, which can assemble DNA damage-binding protein 1

(DDB1) and its substrate to form a new RING-based E3 ubiquitin

ligase, cullin4B-Ring E3 ligase complex (CRL4B). MiR-194 can target

CUL4B directly, inhibiting its translation and functions. On the other

hand, CUL4B was important for H2AK119ub1 and EZH2

recruitment and the consequent H3K27me3 in miR-194. EZH2

repressed miR-194. This study described the role played by the

negative feedback loop, including miR-194 and CUL4B. Negative

feedback plays an essential role in NSCLC (97). More information on

the effects of miRNAs interacting with the UPS in NSCLC is shown

in Table 1.

Some points regarding the interactions between miRNAs and the

UPS can be concluded from the examples provided. Based on current

research, miRNAs usually regulate the ubiquitination degradation or

deubiquitination stabilization of key proteins through E3s or DUBs,

which are the main methods that affect NSCLC development. Other

studies have also revealed that E3s or DUBs could regulate miRNAs,

partially forming a negative feedback loop. Such reaction networks

play a critical role in the tumorigenesis, diagnosis, and treatment of

NSCLC. Some miRNAs regulate the expression levels of target

proteins and change their locations through E3s or DUBs, thus

promoting or inhibiting the subsequent reactions. Studies on drug

resistance and radiotherapy sensitivity of NSCLC influenced by

miRNAs and the UPS are equally popular. Further miRNAs and

E3s or DUBs interactions have been discovered, but further

mechanistic research is required (107, 108). Thus, further research

should lead to more spillovers in diagnosing and treating NSCLC.

The interactions between lncRNAs and E3s or DUBs are more

complex than the interactions between miRNAs and the UPS.

Tumor-associated macrophages (TAMs) are closely related to the

TME and can be classified into M1 and M2 macrophages. M1

macrophages function as tumor suppressors, whereas M2

macrophages have the opposite effect. M2 polarization occurs more

easily in the TME (109). In addition, exosomes and M2 macrophages

can interact with each other to promote tumorigenesis (110). MiR-
TABLE 1 The interaction between miRNAs and UPS in NSCLC.

MIRNA E3/
DUBS

Target pro-
teins

Reaction axis Function Reference

miR-138-5p TRIM65 TNRC6A TRIM65/TNRC6A/MiR-138-5P/
ATG7

Promotes cisplatin resistance (98)

miR-195/
miR-497

SMURF2 TbRI miR-195,miR-497/SMURF2/TbRI/
TGF-b/SMAD

Promotes proliferation, invasion and xenograft tumor growth (99)

miR-520b SPOP GLI2/3 miR-520b/SPOP/GLI2/3/Hh Promotes proliferation and migration (100)

miR-135b CYLD RIP1 IL-6/STAT3/miR-135b/CYLD/RIP1/
NF-kB

Promotes migration, invasion, angiogenesis, xenograft tumor
growth and anti-apoptosis

(101)

miR-101-3p USP47
MDM2

RPL11
P53

miR-101-3p/USP47/RPL11/MDM2/
P53

Suppresses proliferation (102)

miR-30-5p USP22 HIF-1a miR-30-5p/USP22
/HIF-1a/PD−L1

Suppresses immune evasion (103)

miR-320b USP37 CDT1 miR-320b/USP37/CDT1 Suppresses proliferation, invasion and xenograft tumor (104)

miR-365 USP33 ROBO1 miR-365/USP33/SLIT2-ROBO1 Promotes proliferation, migration, invasion and xenograft tumor
growth

(105)

miR-489-3p USP48 b-catenin miR-489-3p/USP48/b-catenin/Wnt Promotes proliferation, invasion, migration and xenografted tumor
growth and metastasis

(106)
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19b-3p could work as an exosomal miRNA and play an oncogenic

role in NSCLC. On the one hand, exosomal miR‐19b‐3p promotes

M2 polarization. Further, M2-polarized macrophages secrete

exosomal LINC00273, which recruits neural precursor cell

expressed developmentally downregulated 4 (NEDD4) and induces

large tumor suppressor kinase 2 (LATS2) ubiquitination. NEDD4 is

an E3 ligase that functions as an oncogene by promoting the

ubiquitination of tumor-suppressive proteins (111). Therefore, miR‐

19b‐3p regulates the Hippo/YAP pathway through LATS2

ubiquitination and promotes tumor progression. On the other

hand, LINC00273 could also increase the RBMX level through

Hippo/Yes associated transcriptional regulator (YAP). X-linked

RNA-binding motif protein (RBMX) is an hnRNP that functions as

an RBP to adjust the packaging of exosomal miRNAs. Therefore,

RBMX helped package miR-19b-3p into LUAD cell-derived

exosomes (112). This closed-loop plays an essential role in M2

polarization and LUAD development. This paper elucidates the

crosstalk between TAMs and LUAD cells mediated by exosomes,

ncRNAs, crucial pathways, and proteins, which provides new

possibilities for LUAD diagnosis and treatment. The expression of

UCHL3 was upregulated in NSCLC tissues and cells and is related to

an unfavorable prognosis. Overexpression of LINC00665 and

silencing of miR-582-5p enhanced the resistance of NSCLC cells to

radiotherapy by upregulating UCHL3 and PD-L1 and stabilizing AhR

to promote immune escape (113). Another study confirmed that

lncRNA CCAT1 could activate and stabilize the PI3K/AKT/mTOR
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pathway. This stabilization is done by translocating fatty acid binding

protein 5 (FABP5) into the nucleus to induce the PPAR‐RXR

complex and pyruvate dehydrogenase kinase 1 (PDK1) translation.

Further, it binds to USP49 and deubiquitinates FABP5, thereby

binding to RAPTOR to induce AKT phosphorylation. CCAT1

participates in reprogramming FA metabolism and enhances the

malignant phenotype of NSCLC (114). More information on the

effects of lncRNA interactions with the UPS on NSCLC is shown

in Table 2.

Current research shows that the reactions between lncRNAs and

the UPS are exceptionally complicated. In some studies, RBPs

remained the target genes of the UPS. LncRNAs regulate

ubiquitination or deubiquitination by competing with the binding

sites of proteins or destroying the combination of proteins and E3s

or DUBs. Some E3s or DUBs are RBPs, and lncRNAs can regulate

enzymes directly, thus adjusting further reactions. Other lncRNAs

regulate E3s or DUBs through their long miRNAs or RBPs. Some

lncRNAs may influence mul t ip l e ub iqu i t ina t ion and

deubiquitination processes. A few lncRNAs can alter the position

of E3s and DUBs to regulate their effects. In conclusion, the diversity

of ubiquitination or deubiquitination regulation by lncRNAs

considerably impacts the occurrence and development of all stages

of NSCLC. Whether it is TME, metabolism, SCS, immune escape, or

other popular NSCLC research fields, crosstalk reactions can be seen

everywhere. Therefore, further related studies should be conducted

in the future.
TABLE 2 The interaction between lncRNAs and UPS in NSCLC(when a protein acts as two roles, the two charts were merged).

LncRNAs E3/
DUBS

Ce/
RBP/
…

Target
proteins

Reaction axis Function Reference

VAL TRIM16 Vimentin AKT/STAT3/VAL/Vimentin-
TRIM16/EMT

Promotes invasion and migration (115)

HOXC-AS3 MDM2 YBX1 HOXC-AS3/YBX1-MDM2/
HOXC8

Promotes proliferation, migration, invasion, xenografted tumor
growth and metastasis

(116)

OXCT1-AS1 NARF LEF1 OXCT1-AS1/LEF1-NARF/EMT Promotes migration, invasion and xenografted tumor metastasis (117)

FAM83A-
AS1

CRLs HIF-1a FAM83A-AS1/HIF-1a-
VHL-CRLs

Promotes migration, invasion, stemness and glycolysis (118)

LNBC3 FBXO11 BCL6 ASO/LNBC3/BCL6-FBXO11 Promotes migration and xenografted tumor growth (119)

ALAL-1 USP4 SART3 ALAL-1/SART3-USP4/NF-kB Promotes immune evasion and proliferation (120)

GIAT4RA Uchl3 LSH GIAT4RA/LSH-UCHL3 Suppresses proliferation migration, invasion, xenografted tumor
growth and metastasis

(121)

RMST FBW7 SOX9 RMST/SOX9-FBW7 Suppresses proliferation, migration and xenografted tumor growth (122)

LINC01426 USP22 SHH LINC01426/USP22/SHH Promotes proliferation, migration, and stemness but suppresses
apotosis

(123)

lncKLF6 BMI1 H2A lncKLF6/USP22-BMI1/KLF6 Promotes proliferation cell cycle, and xenografted tumor growth
but suppress apotosis

(124)

SNHG16 USP21 miR-
4500

YY1 USP21/YY1/SNHG16/miR-4500 Promotes proliferation, migration, and invasion (125)

PKMYT1AR SCFb-
TrCP

miR-
485-5p

b-catenin ASO/PKMYT1AR/miR-485-5p/
PKMYT1/SCFb-TrCP/b-catenin/
WNT

Promotes proliferation, migration, cell cycle, cancer stem cell
maintenance and chemo- or radio-therapy resistance, but suppress
apotosis

(126)

SNHG12 USP8 HuR PD-L1 SNHG12/HuR/USP8/PD-L1 Promotes proliferation and immune escape but suppress apotosis (127)
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The number of studies related to the regulation of circRNAs and

the UPS is insufficient. Some studies have involved the regulation

between E3s, DUBs, and circRNAs, but more profound mechanistic

studies have not yet been conducted. Such research is relatively new

and lacking, but it is crucial for the new direction of NSCLC diagnosis

and treatment. CircIGF2BP3, a circRNA derived from the back-

splicing of IGF2BP3, suppresses CD8T cell infiltration in NSCLC.

Further, circIGF2BP3 is overexpressed and compromises anti-tumor

immunity in NSCLC. METTL3 and METTL14 are composed of a

stable methyltransferase complex (MTC) in a 1:1 ratio and exerts a

methylation function (128). Promoting m6A levels in the

circIGF2BP3 transcript in a METTL3-dependent manner could

enhance the circularization of circIGF2BP3. In addition,

circIGF2BP3 upregulates PKP3 expression in NSCLC cells by

binding to miR-3173-5p or miR-328-3p. Plakophilin 3 (PKP3)

belongs to the armadillo protein family, which can mediate PD-L1

expression and rescue it from proteasomal degradation. OTUB1

functions as a downstream effector of PKP3 and inhibits its

degradation, thus further avoiding the killing effects of T cells and

leading to immune escape by upregulating the PD-1 and PD-L1

complex (129). In this study, circIGF2BP3 and DUB became the

PKP3 upstream and downstream, respectively, and the indirect effects

of these two factors had an essential impact on the occurrence and

development of NSCLC. Insulin-like growth factor-2 mRNA-binding

proteins (IGF2BPs), IGF2BP1 and IGF2BP3, are evolutionarily

conserved families of RNA-binding proteins that regulate important

parts of cancer cells and promote the development of cancers (130).

CircNDUFB2 has a length of 249 nucleotides and is generated from

NDUFB2. Functionally, circNDUFB2 serves as a suppressor of

NSCLC development. CircNDUFB2 enhances the interactions

between TRIM25 and IGF2BPs and subsequently boosts the

IGF2BPs ubiquitination by TRIM25. Interestingly, circNDUFB2

exerts a tumor-suppressive role by promoting IGF2BPs

ubiquitination and eliciting immune responses in NSCLC cells.

Retinoic acid-inducible gene I (RIG-I) is a member of the RIG-I-

like receptor (RLR) family, which recognizes viral RNAs and induces

innate immune responses against viral infections. When lacking an

RNA ligand, RIG-I adopts an auto-repressed conformation that

prevents the N-terminal caspase recruitment domains (CARDs)

from signaling. CircNDUFB2 activates RIG-I by destabilizing the

interaction between CARDs and its helicase domain, thereby

inducing the activation of RIG-I-MAVS signaling cascades (131). In

addition, circNDUFB2 promotes IGF2BPs ubiquitination through the

circNDUFB2/TRIM25/IGF2BPs signaling pathway and causes

cellular immune responses by activating RIG-I. CircNDUFB2

inh ib i t ed tumor i g ene s i s by two mechan i sms , wh i ch

prompted a focus on the effects of circRNAs on tumors from

multiple perspectives.
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Most circRNAs regulated the E3s or DUBs by sponging miRNAs.

Therefore, it can be said that the research on the crosstalk between the

circRNAs and the UPS is in its infancy. However, with further

development, crosstalk studies between circRNAs and the UPS are

bound to bring more remarkable progress in diagnosing and

treating NSCLC.
5 Conclusion

This article reviews the current research progress on the effects of

interact ions between ncRNAs and ubiquit ination (and

deubiquitination) in NSCLC. The intrinsic correlation between

regulatory ncRNAs and UPS in NSCLC has been increasingly

studied in recent years. It is worth noting that the interactions

between ncRNAs and the UPS have been found to influence the

progression of NSCLC, which makes them critical therapeutic targets.

However, there is limited research that uncovers the precise

mechanisms. There are many hurdles to overcome in studying the

interplay between regulatory ncRNAs and the UPS in NSCLC.

Nevertheless, with the continuous innovations of experimental

methods and techniques, interactions between ncRNAs and

ubiquitination and deubiquitination to innovate diagnosis methods

and improve treatment efficiency in NSCLC are foreseeable.
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