256 research outputs found

    Application of Bayesian Methods to Exposure Assessment of Area Concentrations at a Rubber Factory

    Get PDF
    The present study estimated area concentrations of airborne benzene in several workshops using Bayesian methods based on available historical measurements. A rubber products factory utilizing benzene was investigated. Historical measurements of benzene concentrations, expert experiences, and deterministic modeling were utilized in a Bayesian Method to estimate area concentrations. Historical concentrations (n=124) were available with the geometric mean of 15.3 mg/m3. The geometric mean of the current field measurements on the workstations ranged from 0.7 to 89.0 mg/m3. One of the seven historical geometric means by work locations significantly differed from the field measurements for equivalent locations, but none of the geometric means of Bayesian estimates were significantly different from the field measurement results. The Bayesian methods based on the historical measurements appeared to be a useful tool for more closely estimating area concentrations shown by field data than that predicted only using historical measurements

    Weak ferromagnetism and spin glass state with nano-sized nickel carbide

    Full text link
    Ni3C nanoparticles of about 40 nm have been studied experimentally to exhibit weak ferromagnetic (FM), spin-glass (SG) and paramagnetic (PM) properties. The freezing temperature of the SG phase at zero applied field is determined as, TF0 ~ 11.0 K. At T > TF0, a very weak ferromagnetism has been observed over a PM background. The Curie temperature, TC, is shown to exceed 300 K and the ferromagnetism at 300 K is determined as about 0.02 emu/g (~6.7*10^{-4}mu_B per Ni3C formula unit) by subtracting the background paramagnetism. An anomalous dip appears in the temperature dependent coercivity, HC(T), near the freezing temperature, TF0. It reflects a distortedly reduced coercivity in the M(H) hysteresis loop measured at T = TF0 with the applied sweeping field around H = 0. This is attributable to the exchange coupling effect between the SG and the weak FM phases. The possible origin of the magnetic moments that account for the observed FM, SG and PM properties is discussed.Comment: 25 pages, 8 figures, 1 table, J Appl Phys In pres

    Silencing miR-146a-5p protects against injury-induced osteoarthritis in mice

    Get PDF
    Osteoarthritis (OA), the most prevalent joint disease and the leading cause of disability, remains an incurable disease largely because the etiology and pathogenesis underlying this degenerative process are poorly understood. Low-grade inflammation within joints is a well-established factor that disturbs joint homeostasis and leads to an imbalance between anabolic and catabolic processes in articular cartilage; however, the complexity of the network between inflammatory factors that often involves positive and negative feedback loops makes current anti-cytokine therapy ineffective. MicroRNAs (miRNAs) have emerged as key regulators to control inflammation, and aberrant miRNAs expression has recently been linked to OA pathophysiology. In the present study, we characterized transcriptomic profiles of miRNAs in primary murine articular chondrocytes in response to a proinflammatory cytokine, IL-1β, and identifie

    Microbial diversity and physicochemical properties in farmland soils amended by effective microorganisms and fulvic acid for cropping Asian ginseng

    Get PDF
    Demand for products made from the dry mass of Asian ginseng (Panax ginseng) is growing, but harvest is limited by fungal disease infection when ginseng is replanted in the same field. Rotated cropping with maize can cope with the replant limit, but it may take decades. We aimed to amend post-maize-cropping farmland soils for cultivating Asian ginseng, using effective microorganisms EMs and fulvic acid (FA) additives and detecting and comparing their effects on soil microbial diversity and physiochemical properties. Amendments promoted seedling survival and depressed disease-infection. Both EMs and FA increased the relative abundances of Pseudomonas, Flavobacterium, Duganella, and Massilia spp., but, decreased the relative abundances of Fusarium and Sistotrema. In addition, soil nutrient availability and properties that benefitted nutrient availabilities were promoted. In conclusion, amendments with EMs and FA improved the fertility of farmland soils, and the quality of Asian ginseng, and revealed the relationship between soil microbial diversity and physiochemical properties

    Development, Characterization, and Evaluation of PSMA-Targeted Glycol Chitosan Micelles for Prostate Cancer Therapy

    Get PDF
    Prostate cancer-binding peptides- (PCP-) modified polymeric micelles were prepared and used for the treatment of prostate-specific membrane antigen- (PSMA-) expressing prostate cancer in a target-specific manner. Cholesterol-modified glycol chitosan (CHGC) was synthesized. PCP-conjugated CHGC (PCP-CHGC) micelles were fabricated and characterized. The degree of substitution was 5.2 PCP groups and 5.8 cholesterol groups per 100 sugar residues of glycol chitosan. The critical aggregation concentration (CAC) of PCP-CHGC copolymer was 0.0254 mg/mL. Doxorubicin (DOX) was chosen as a model antitumor drug. The DOX-loaded micelles were prepared by an o/w method. The mean diameter of DOX-loaded PCP-CHGC (DOX-PCP-CHGC) micelles was 293 nm determined by dynamic light scattering (DLS). DOX released from drug-loaded micelles was in a biphasic manner. DOX-PCP-CHGC micelles exhibited higher cytotoxicity in vitro against PSMA-expressing LNCaP cells than DOX-loaded CHGC (DOX-CHGC) micelles. Moreover, the cellular uptake of DOX-PCP-CHGC micelles determined by confocal laser scanning microscopy (CLSM) and flow cytometry was higher than that of DOX-CHGC micelles in LNCaP cells. Importantly, DOX-PCP-CHGC micelles demonstrated stronger antitumor efficacy against LNCaP tumor xenograft models than doxorubicin hydrochloride and DOX-CHGC micelles. Taken together, this study provides a potential way in developing PSMA-targeted drug delivery system for prostate cancer therapy

    Transgenic soybean production of bioactive human epidermal growth factor (EGF)

    Get PDF
    Necrotizing enterocolitis (NEC) is a devastating condition of premature infants that results from the gut microbiome invading immature intestinal tissues. This results in a life-threatening disease that is frequently treated with the surgical removal of diseased and dead tissues. Epidermal growth factor (EGF), typically found in bodily fluids, such as amniotic fluid, salvia and mother's breast milk, is an intestinotrophic growth factor and may reduce the onset of NEC in premature infants. We have produced human EGF in soybean seeds to levels biologically relevant and demonstrated its comparable activity to commercially available EGF. Transgenic soybean seeds expressing a seed-specific codon optimized gene encoding of the human EGF protein with an added ER signal tag at the N' terminal were produced. Seven independent lines were grown to homozygous and found to accumulate a range of 6.7 +/- 3.1 to 129.0 +/- 36.7 μg EGF/g of dry soybean seed. Proteomic and immunoblot analysis indicates that the inserted EGF is the same as the human EGF protein. Phosphorylation and immunohistochemical assays on the EGF receptor in HeLa cells indicate the EGF protein produced in soybean seed is bioactive and comparable to commercially available human EGF. This work demonstrates the feasibility of using soybean seeds as a biofactory to produce therapeutic agents in a soymilk delivery platform

    Two-Phase Iteration for Value Function Approximation and Hyperparameter Optimization in Gaussian-Kernel-Based Adaptive Critic Design

    Get PDF
    Adaptive Dynamic Programming (ADP) with critic-actor architecture is an effective way to perform online learning control. To avoid the subjectivity in the design of a neural network that serves as a critic network, kernel-based adaptive critic design (ACD) was developed recently. There are two essential issues for a static kernel-based model: how to determine proper hyperparameters in advance and how to select right samples to describe the value function. They all rely on the assessment of sample values. Based on the theoretical analysis, this paper presents a two-phase simultaneous learning method for a Gaussian-kernel-based critic network. It is able to estimate the values of samples without infinitively revisiting them. And the hyperparameters of the kernel model are optimized simultaneously. Based on the estimated sample values, the sample set can be refined by adding alternatives or deleting redundances. Combining this critic design with actor network, we present a Gaussian-kernel-based Adaptive Dynamic Programming (GK-ADP) approach. Simulations are used to verify its feasibility, particularly the necessity of two-phase learning, the convergence characteristics, and the improvement of the system performance by using a varying sample set

    Development of a Ground Based Remote Sensing Approach for Direct Evaluation of Aerosol-Cloud Interaction

    Full text link
    The possible interaction and modification of cloud properties due to aerosols is one of the most poorly understood mechanisms within climate studies, resulting in the most significant uncertainty as regards radiation budgeting. In this study, we explore direct ground based remote sensing methods to assess the Aerosol-Cloud Indirect Effect directly, as space-borne retrievals are not directly suitable for simultaneous aerosol/cloud retrievals. To illustrate some of these difficulties, a statistical assessment of existing multispectral imagers on geostationary (e.g., GOES)/Moderate Resolution Imaging Spectroradiometer (MODIS) satellite retrievals of the Cloud Droplet Effective Radius (Reff) showed significant biases especially at larger solar zenith angles, further motivating the use of ground based remote sensing approaches. In particular, we discuss the potential of using a combined Microwave Radiometer (MWR)—Multi-Filter Rotating Shadowband Radiometer (MFRSR) system for real-time monitoring of Cloud Optical Depth (COD) and Cloud Droplet Effective Radius (Reff), which are combined with aerosol vertical properties from an aerosol lidar. An iterative approach combining the simultaneous observations from MFRSR and MWR are used to retrieve the COD and Reff for thick cloud cases and are extensively validated using the DoE Southern Great Plains (SGP) retrievals as well as regression based parameterized model retrievals. In addition, we account for uncertainties in background aerosol, surface albedo and the combined measurement uncertainties from the MWR and MFRSR in order to provide realistic uncertainty estimates, which is found to be ~10% for the parameter range of interest in Aerosol-Cloud Interactions. Finally, we analyze a particular case of possible aerosol-cloud interaction described in the literature at the SGP site and demonstrate that aerosol properties obtained at the surface can lead to inconclusive results in comparison to lidar-derived aerosol properties near the cloud base

    DNA methylation-mediated Rbpjk suppression protects against fracture nonunion caused by systemic inflammation

    Get PDF
    Challenging skeletal repairs are frequently seen in patients experiencing systemic inflammation. To tackle the complexity and heterogeneity of the skeletal repair process, we performed single-cell RNA sequencing and revealed that progenitor cells were one of the major lineages responsive to elevated inflammation and this response adversely affected progenitor differentiation by upregulation of Rbpjk in fracture nonunion. We then validated the interplay between inflammation (via constitutive activation of Ikk2, Ikk2ca) and Rbpjk specifically in progenitors by using genetic animal models. Focusing on epigenetic regulation, we identified Rbpjk as a direct target of Dnmt3b. Mechanistically, inflammation decreased Dnmt3b expression in progenitor cells, consequently leading to Rbpjk upregulation via hypomethylation within its promoter region. We also showed that Dnmt3b loss-of-function mice phenotypically recapitulated the fracture repair defects observed in Ikk2ca-transgenic mice, whereas Dnmt3b-transgenic mice alleviated fracture repair defects induced by Ikk2ca. Moreover, Rbpjk ablation restored fracture repair in both Ikk2ca mice and Dnmt3b loss-of-function mice. Altogether, this work elucidates a common mechanism involving a NF-κB/Dnmt3b/Rbpjk axis within the context of inflamed bone regeneration. Building on this mechanistic insight, we applied local treatment with epigenetically modified progenitor cells in a previously established mouse model of inflammation-mediated fracture nonunion and showed a functional restoration of bone regeneration under inflammatory conditions through an increase in progenitor differentiation potential
    • …
    corecore