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Adaptive Dynamic Programming (ADP) with critic-actor architecture is an effective way to perform online learning control. To
avoid the subjectivity in the design of a neural network that serves as a critic network, kernel-based adaptive critic design (ACD)
was developed recently.There are two essential issues for a static kernel-basedmodel: how to determine proper hyperparameters in
advance and how to select right samples to describe the value function. They all rely on the assessment of sample values. Based
on the theoretical analysis, this paper presents a two-phase simultaneous learning method for a Gaussian-kernel-based critic
network. It is able to estimate the values of samples without infinitively revisiting them. And the hyperparameters of the kernel
model are optimized simultaneously. Based on the estimated sample values, the sample set can be refined by adding alternatives
or deleting redundances. Combining this critic design with actor network, we present a Gaussian-kernel-based Adaptive Dynamic
Programming (GK-ADP) approach. Simulations are used to verify its feasibility, particularly the necessity of two-phase learning,
the convergence characteristics, and the improvement of the system performance by using a varying sample set.

1. Introduction

Reinforcement learning (RL) is an interactive machine learn-
ing method for solving sequential decision problems. It is
well known as an important learning method in unknown
or dynamic environment. Different from supervised learning
and unsupervised learning, RL interacts with the envi-
ronment through trial mechanism and modifies its action
policies to maximize the payoffs [1]. It is strongly connected
from a theoretical point of view with direct and indirect
adaptive optimal control methods [2].

Traditional RL research focused on discrete state/action
systems; state/action only takes on a finite number of pre-
scribed discrete values. The learning space grows exponen-
tially as the number of states and the number of allowed
actions increase. This leads to the so-called curse of dimen-
sionality (CoD) [2]. In order to mitigate this CoD problem,
function approximations and generalization methods [3] are

introduced to store the optimal value and the optimal control
as a function of the state vector. Generalization methods
based on parametric model such as neural networks [4–6]
have become one of popular means to solve RL problem in
continuous environments.

Currently, research work on RL in continuous environ-
ment to construct learning systems for nonlinear optimal
control has attracted attention of researchers and scholars in
control domains for the reason that it can modify its policy
only based on the value function without knowing the model
structure or the parameters in advance. A family of new
RL techniques known as Approximate or Adaptive Dynamic
Programming (ADP) (also known as Neurodynamic Pro-
gramming or Adaptive Critic Designs (ACDs)) has received
more and more research interest [7, 8]. ADPs are based on
the actor-critic structure, in which there is a critic assessing
the value of the action or control policy applied by an actor
and an actor modifying its action based on the assessment
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of values. In literatures, ADP approaches are categorized as
the followingmain schemes: heuristic dynamic programming
(HDP), dual heuristic programming (DHP), globalized dual
heuristic programming (GDHP), and their action-dependent
versions [9, 10].

ADP researches always adopt multilayer perceptron neu-
ral networks (MLPNNs) as the critic design. Vrabie and Lewis
proposed an online approach to continuous-time direct
adaptive optimal control which made use of neural networks
to parametrically represent the control policy and the per-
formance of the control system [11]. Liu et al. solved the
constrained optimal control problem of unknown discrete-
time nonlinear systems based on the iterative ADP algorithm
via GDHP technique with three neural networks [12]. In fact,
different kinds of neural networks (NNs) play the important
roles in ADP algorithms, such as radial basis function NNs
[3], wavelet basis function NNs [13], and echo state network
[14].

Besides the benefits brought by NNs, ADP methods
always suffer from some problems concerned in the design of
NNs. On one hand, the learning control performance greatly
depends on empirical design of critic networks, especially the
manual setting of the hidden layer or the basis functions. On
the other hand, due to the local minima in neural network
training, how to improve the quality of the final policies is
still an open problem [15].

As we can see, it is difficult to evaluate the effective-
ness of the parametric model when the knowledge on the
model’s order or nonlinear characteristics of the system is
not enough. Compared with parametric modeling methods,
nonparametricmodelingmethods, especially kernelmethods
[16, 17], do not need to set the model structure in advance.
Hence, kernel machines have been popularly studied to
realize nonlinear and nonparametric modeling. Engel et
al. proposed the kernel recursive least-squares algorithm
to construct minimum mean-squared-error solutions to
nonlinear least-squares problems [18]. As popular kernel
machines, support vector machines (SVMs) also have been
applied to nonparametricmodeling problems. Dietterich and
Wang combined linear programming with SVMs to find
value function approximations [19]. The similar research was
published in [20], inwhich the least-squares SVMswere used.
Nevertheless, they both focused on discrete state/action space
and lacked theoretical results on the policies obtained more
or less.

In addition to SVMs, Gaussian processes (GPs) have
become an alternative generalization method. GP models
are powerful nonparametric tools for approximate Bayesian
inference and learning. In comparison with other popular
nonlinear architectures, such as multilayer perceptrons, their
behavior is conceptually simpler to understand, and model
fitting can be achieved without resorting to nonconvex
optimization routines [21, 22]. In [23], Engel et al. first
applied GPs in temporal-difference (TD) learning for MDPs
with stochastic rewards and deterministic transitions. They
derived a new GPTD algorithm in [24] that overcame the
limitation of deterministic transitions and extended GPTD
to the estimation of state-action values. GPTD algorithm just
addressed the value approximation, so it should be combined

with actor-critic methods or other policy iteration methods
to solve learning control problems.

An alternative approach employing GPs in RL is model-
based value iteration or policy iteration method, in which
GP model is used to model system dynamics and rep-
resent the value function [25]. In [26], an approximated
value-function based RL algorithm named Gaussian process
dynamic programming (GPDP) was presented, which built
dynamic transition model, value function model, and action
policy model, respectively, using GPs. In this way, the sample
set will be adjusted to such a reasonable shape with high
sample densities near the equilibriums or the places where
value functions change dramatically. Thus it is good at con-
trolling nonlinear systems with complex dynamics. A major
shortcoming, even if the relatively high computation cost is
endurable, is that the states in sample set need to be revisited
again and again in order to update their value functions. Since
this condition is unpractical in real implements, it diminishes
the appeal of employing this method.

Kernel-based method is also introduced to ADP. In [15],
a novel framework of ACDs with sparse kernel machines was
presented by integrating kernel methods into critic network.
A sparsification method based on the approximately linear
dependence (ALD) analysis was used to sparsify the kernel
machines.Obviously, thismethod can overcome the difficulty
of presetting model structure in parametric models and real-
ize actor-critic learning online [27]. However, the selection of
samples based on the ALD analysis is an offline way without
considering the distribution of the value function.Therefore,
the data samples cannot be adjusted online, which makes
the method more suitable for control systems with smooth
dynamics, where value function changes gently.

We think GPDP and ACDs with sparse kernel machines
are complementary. As indicated in [28], it is known the
prediction of GPs is viewed as a linear combination of the
covariance between the new points and the samples. Hence
it seems reasonable to introduce kernel machine with GPs
to build critic network in ACDs, if the values of the samples
are known or at least can be assessed numerically. And then
the sample set will be adjusted online during critic-actor
learning.

The major problem here is how to realize the value
function learning and GP models updating simultaneously,
especially under the condition that the samples of state-
action space can hardly be revisited infinitely in order to
approximate their values. To tackle this problem, a two-phase
iteration is developed in order to get optimal control policy
for the system whose dynamics are unknown a priori.

2. Description of the Problem

In general, ADP is an actor-critic method which approx-
imates the value functions and policies to encourage the
realization of generalization in MDPs with large or continu-
ous spaces. The critic design plays the most important role,
because it determines how the actor optimizes its action.
Hence, we give a brief introduction on both kernel-based
ACD and GPs, in order to derive the clear description of the
theoretical problem.
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2.1. Kernel-Based ACDs. Kernel-based ACDs mainly consist
of a critic network, a kernel-based feature learning module, a
reward function, an actor network/controller, and a model of
the plant. The critic constructed by kernel machine is used to
approximate the value functions or their derivatives.Then the
output of the critic is used in the training process of the actor
so that policy gradients can be computed. As actor finally
converges, the optimal action policymapping states to actions
is described by this actor.

Traditional neural network based on kernel machine and
samples serves as the model of value functions, just as the
following equation shows, and the recursive algorithm, such
as KLSTD [29] serves as value function approximation:

𝑄 (𝑥) =

𝐿

∑

𝑖=1
𝛼
𝑖
𝑘 (𝑥, 𝑥

𝑖
) , (1)

where 𝑥 and 𝑥
𝑖
represent state-action pairs (𝑠, 𝑎) and (𝑠

𝑖
, 𝑎
𝑖
),

𝛼
𝑖
, 𝑖 = 1, 2, . . . , 𝐿, are the weights, and (𝑠

𝑖
, 𝑎
𝑖
) represents

selected state-action pairs in sample set and 𝑘(𝑥, 𝑥
𝑖
) is a kernel

function.
The key of critic learning is the update of the weights vec-

tor𝛼.The value functionmodeling in continuous state/action
space is a regression problem. From the view of the model,
NN structure is a reproducing kernel space spanned by
the samples, in which the value function is expressed as a
linear regression function. Obviously as the basis of Hilbert
space, how to select samples determines the VC dimension
of identification, as well as the performance of value function
approximation.

If only using ALD-based kernel sparsification, it is
only independent of samples that are considered in sample
selection. So it is hard to evaluate how good the sample
set is, because the sample selection does not consider the
distribution of value function, and the performance of ALD
analysis is affected seriously by the hyperparameters of kernel
function, which are predetermined empirically and fixed
during learning.

If the hyperparameters can be optimized online and the
value function w.r.t. samples can be evaluated by iteration
algorithms, the critic network will be optimized not only by
value approximation but also by hyperparameter optimiza-
tion. Moreover with approximated sample values, there is a
direct way to evaluate the validity of sample set, in order
to regulate the set online. Thus in this paper we turn to
Gaussian processes to construct the criterion for samples and
hyperparameters.

2.2. GP-Based Value Function Model. For an MDP, the data
samples 𝑥

𝑖
and the corresponding 𝑄 value can be collected

by observing theMDP.Here 𝑥
𝑖
is the state-action pairs (𝑠

𝑖
, 𝑎
𝑖
),

𝑠 ∈ 𝑅
𝑁, 𝑎 ∈ 𝑅

𝑀, and 𝑄(𝑥) is the value function defined as

𝑄
∗
(𝑥) = 𝑅 (𝑥) + 𝛽∫𝑝 (𝑠

󸀠
| 𝑥)𝑉 (𝑠

󸀠
) 𝑑𝑠
󸀠
, (2)

where 𝑉(𝑠) = max
𝑎
𝑄(𝑥).

Given a sample set collected from a continuous dynamic
system, {𝑋

𝐿
, 𝑦}, where 𝑦 = 𝑄(𝑋

𝐿
) + 𝜀, 𝜀 ∼ 𝑁(0, V0), Gaussian

regression with covariance function shown in the following
equation is a well known model technology to infer the 𝑄

function:

𝑘 (𝑥
𝑝
, 𝑥
𝑞
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2
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𝑇
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−𝑥
𝑞
)] , (3)

where Λ = diag([𝑤1, 𝑤2, . . . , 𝑤𝑁+𝑀]).
Assuming additive independent identically distributed

Gaussian noise 𝜀 with variance V0, the prior on the noisy
observations becomes

𝐾
𝐿
= 𝐾 (𝑋

𝐿
, 𝑋
𝐿
) + V0𝐼𝐿, (4)
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(5)

The parameters 𝑤
𝑑
, V0, and V1 are the hyperparam-

eters of the 𝐺𝑅
𝑞
and collected within the vector 𝜃 =

[𝑤1 ⋅ ⋅ ⋅ 𝑤
𝑁+𝑀

V1 V0]
𝑇.

For an arbitrary input 𝑥
∗
, the predictive distribution of

the function value is Gaussian distributed with mean and
variance given by

𝐸 [𝑄 (𝑥
∗
)] = 𝐾 (𝑥

∗
, 𝑋
𝐿
)𝐾
−1
𝐿

𝑦, (6)

var [𝑄 (𝑥)] = 𝑘 (𝑥
∗
, 𝑥
∗
) −𝐾 (𝑥

∗
, 𝑋
𝐿
)𝐾
−1
𝐿

𝐾(𝑋
𝐿
, 𝑥
∗
) . (7)

Comparing (6) to (1), we find that if we let 𝛼 = 𝐾
−1
𝐿

𝑦, the
neural network is also regarded as the Gaussian regression.
Or the critic network can be constructed based on Gaussian
kernel machine, if the following conditions are satisfied.

Condition 1. The hyperparameters 𝜃 of Gaussian kernel are
known.

Condition 2. The values 𝑦 w.r.t. all samples states 𝑋
𝐿
are

known.

With Gaussian-kernel-based critic network, the sample
state-action pairs and corresponding values are known. And
then the criterion such as the comprehensive utility proposed
in [26] can be set up, in order to refine sample set online. At
the same time it is convenient to optimize hyperparameters,
in order to approximate 𝑄 value function more accurately.
Thus besides the advantages brought by kernel machine, the
critic based on Gaussian-kernel will be better in approximat-
ing value functions.

Consider Condition 1. If the values 𝑦 w.r.t.𝑋
𝐿
are known

(note that it is indeed Condition 2), the common way to get
hyperparameters is by evidencemaximization, where the log-
evidence is given by

𝐿 (𝜃) = −
1
2
𝑦
𝑇
𝐾
−1
𝐿

𝑦−
1
2
log 󵄨󵄨󵄨󵄨𝐾𝐿

󵄨󵄨󵄨󵄨 −
𝑛

2
log 2𝜋. (8)
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It requires the calculation of the derivative of 𝐿(𝜃) w.r.t. each
𝜃
𝑖
, given by

𝜕𝐿 (𝜃)

𝜕𝜃
𝑖

= −
1
2
tr [𝐾−1
𝐿

𝜕𝐾
𝐿

𝜕𝜃
𝑖

]+
1
2
𝛼
𝑇 𝜕𝐾𝐿

𝜕𝜃
𝑖

𝛼, (9)

where tr[⋅] denotes the trace, 𝛼 = 𝐾
−1
𝐿

𝑦.
Consider Condition 2. For unknown system, if 𝐾

𝐿
is

known, that is, the hyperparameters are known (note that
it is indeed Condition 1), the update of critic network will
be transferred to the update of values w.r.t. samples by using
value iteration.

According to the analysis, both conditions are interde-
pendent. That means the update of critic depends on known
hyperparameters, and the optimization of hyperparameters
depends on accurate sample values.

Hence we need a comprehensive iteration method to
realize value approximation and optimization of hyperpa-
rameters simultaneously. A direct way is to update them
alternately. Unfortunately, this way is not reasonable because
these two processes are tightly coupled. For example, tem-
poral differential errors drive value approximation, but the
change of weights 𝛼will cause the change of hyperparameters
𝜃 simultaneously; then it is difficult to tell whether this
temporal differential error is induced by observation or by
Gaussian regression model changing.

To solve this problem, a kind of two-phase value iteration
for critic network is presented in the next section, and the
conditions of convergence are analyzed.

3. Two-Phase Value Iteration for Critic
Network Approximation

First a proposition is given to describe the relationship
between hyperparameters and the sample value function.

Proposition 1. The hyperparameters are optimized by evi-
dence maximization according to the samples and their Q
values, and the log-evidence is given by

𝜕𝐿 (𝜃)

𝜕𝜃
𝑖
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1
2
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𝐿
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𝐿
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𝑖

]+
1
2
𝛼
𝑇 𝜕𝐾𝐿

𝜕𝜃
𝑖

𝛼
𝑇
= 0,

𝑖 = 1, . . . , 𝐷,

(10)

where 𝛼 = 𝐾
−1
𝐿

𝑦. It can be proved that, for arbitrary hyperpa-
rameters 𝜃, if 𝛼 ̸= 0, (10) defines an implicit function or a
continuously differentiable function as follows:

𝜃 = 𝑓 (𝛼) = [𝑓1 (𝛼) 𝑓2 (𝛼) ⋅ ⋅ ⋅ 𝑓
𝐷 (𝛼)]

𝑇

. (11)

Then the two-phase value iteration for critic network is
described as the following theorem.

Theorem 2. Given the following conditions

(1) the system is boundary input and boundary output
(BIBO) stable,

(2) the immediate reward 𝑟 is bounded,
(3) for 𝑘 = 1, 2, 𝜂𝑘

𝑡
→ 0, ∑∞

𝑡=1 𝜂
𝑘

𝑡
= ∞,

the following iteration process is convergent:

𝛼
𝑡+1 = 𝛼

𝑡
,

𝜃
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𝑡
+ 𝜂
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𝑡
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𝑡
𝑘
ℵ
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(𝑥,𝑋
𝐿
)

⋅ [𝑟 + 𝛽𝑉 (𝜃
𝑡
, 𝑥
󸀠
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𝜃
𝑡
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) 𝛼
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𝜃
𝑡+2 = 𝜃
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(12)

where 𝑉(𝜃
𝑡
, 𝑥
󸀠
) = max

𝑎
𝑘
𝜃
𝑡

(𝑥
󸀠
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𝐿
)𝛼(𝑡) and 𝑘

ℵ

𝜃
𝑡

(𝑥, 𝑋
𝐿
)

is a kind of pseudoinversion of 𝑘
𝜃
𝑡

(𝑥, 𝑋
𝐿
); that is,

𝑘
𝜃
𝑡

(𝑥, 𝑋
𝐿
)𝑘
ℵ

𝜃
𝑡

(𝑥, 𝑋
𝐿
) = 1.

Proof. From (12), it is clear that the two phases include the
update of hyperparameters in phase 1, which is viewed as the
update of generalization model, and the update of samples’
value in phase 2, which is viewed as the update of critic
network.

The convergence of iterative algorithm is proved based on
stochastic approximation Lyapunov method.

Define that

𝑃
𝑡
𝑘
𝜃
𝑡

(𝑥,𝑋
𝐿
) 𝛼
𝑡
= 𝑟 +𝛽𝑉 (𝜃

𝑡
, 𝑥
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)
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𝑘
𝜃
𝑡
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󸀠
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𝐿
) 𝛼 (𝑡) .

(13)

Equation (12) is rewritten as

𝛼
𝑡+1 = 𝛼

𝑡
,

𝜃
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𝑡
+ 𝜂

1
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Define approximation errors as
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Further define that
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𝜃
𝑡

(𝑥,𝑋
𝐿
) 𝛼
𝑡+1] .

(17)

Thus (16) is reexpressed as

𝜑
2
𝑡+2 = 𝜑

1
𝑡+1 + 𝜂

2
𝑡
𝜆1 (𝑥, 𝛼𝑡+1, 𝛼

∗
) + 𝜂

2
𝑡
𝜆2 (𝑥, 𝛼𝑡+1, 𝛼

∗
) . (18)

Let 𝜑
𝑡
= [(𝜑

1
𝑡
)
𝑇

(𝜑
2
𝑡
)
𝑇]
𝑇

, and the two-phase iteration is
in the shape of stochastic approximation; that is,

[
𝜑
1
𝑡+1

𝜑
2
𝑡+1

] = [
𝜑
1
𝑡

𝜑
2
𝑡

]+[
−𝜂

1
𝑡
𝜑
1
𝑡

0
] ,

[
𝜑
1
𝑡+2

𝜑
2
𝑡+2

]

= [
𝜑
1
𝑡+1

𝜑
2
𝑡+1

]

+[
0

𝜂
2
𝑡
𝜆1 (𝑥, 𝛼𝑡+1, 𝛼

∗
) + 𝜂

2
𝑡
𝜆2 (𝑥, 𝛼𝑡+1, 𝛼

∗
)
] .

(19)

Define
𝑉 (𝜑
𝑡
)

= 𝜑
𝑇

𝑡
Λ𝜑
𝑡

= [(𝜑
1
𝑡
)
𝑇

(𝜑
2
𝑡
)
𝑇

] [
𝐼
𝐷

0

0 𝑘
𝑇

𝜃
𝑡

(𝑥
∗
, 𝑋
𝐿
) 𝑘
𝜃
𝑡

(𝑥
∗
, 𝑋
𝐿
)
] [

𝜑
1
𝑡

𝜑
2
𝑡

] ,

(20)

where 𝐷 is the scale of the hyperparameters and 𝑥
∗ will

be defined later. Let 𝑘∗
𝑡
represent 𝑘𝑇

𝜃
𝑡

(𝑥
∗
, 𝑋
𝐿
)𝑘
𝜃
𝑡

(𝑥
∗
, 𝑋
𝐿
) for

short.
Obviously (20) is a positive definitematrix, and |𝑥

∗
| < ∞,

|𝑘
∗

𝑡
| < ∞. Hence,𝑉(𝜑

𝑡
) is a Lyapunov functional. At moment

𝑡, the conditional expectation of the positive definite matrix
is

𝐸
𝑡
𝑉
𝑡+2 (𝜑𝑡+2)

= 𝐸
𝑡
[𝜑
𝑇

𝑡+2Λ𝜑
𝑡+2]

= 𝐸
𝑡
{[(𝜑

1
𝑡+2)
𝑇

(𝜑
2
𝑡+2)
𝑇

] [
𝐼
𝐷

0

0 𝑘
∗

𝑡

][
𝜑
1
𝑡+2

𝜑
2
𝑡+2

]} .

(21)

It is easy to compute the first-order Taylor expansion of
(21) as

𝐸
𝑡
𝑉
𝑡+2 (𝜑𝑡+2)

= 𝐸
𝑡
𝑉
𝑡+1 (𝜑𝑡+1) + 𝜂

2
𝑡
𝐸
𝑡
[𝑉
󸀠

𝑡+1 (𝜑𝑡+1) (𝜑𝑡+2 −𝜑
𝑡+1)]

+ (𝜂
2
𝑡
)
2
𝐶2𝐸𝑡 [(𝜑𝑡+2 −𝜑

𝑡+1)
𝑇
(𝜑
𝑡+2 −𝜑

𝑡+1)]

(22)

in which the first item on the right of (22) is

𝐸
𝑡
𝑉
𝑡+1 (𝜑𝑡+1)

= 𝑉
𝑡
(𝜑
𝑡
) + 𝜂

1
𝑡
𝐸
𝑡
[𝑉
󸀠

𝑡
(𝜑
𝑡
) (𝜑
𝑡+1 −𝜑

𝑡
)]

+ (𝜂
1
𝑡
)
2
𝐶1𝐸𝑡 [(𝜑𝑡+1 −𝜑

𝑡
)
𝑇
(𝜑
𝑡+1 −𝜑

𝑡
)] .

(23)

Substituting (23) into (22) yields

𝐸
𝑡
𝑉
𝑡+2 (𝜑𝑡+2) −𝑉

𝑡
(𝜑
𝑡
)

= 𝜂
1
𝑡
𝐸
𝑡
[𝑉
󸀠

𝑡
(𝜑
𝑡
) 𝑌

1
𝑡
] + 𝜂

2
𝑡
𝐸
𝑡
[𝑉
󸀠

𝑡+1 (𝜑𝑡+1) 𝑌
2
𝑡+1]

+ (𝜂
1
𝑡
)
2
𝐶1𝐸𝑡 [(𝑌

1
𝑡
)
2
] + (𝜂

1
𝑡
)
2
𝐶2𝐸𝑡 [(𝑌

2
𝑡+1)

2
] ,

(24)

where 𝑌1
𝑡
= [ −𝜑

1
𝑡

0
],

𝑌
2
𝑡+1 = [

0
𝑃
𝑡+1𝑘𝜃

𝑡

(𝑥,𝑋
𝐿
) 𝛼
𝑡+1 − 𝑘

𝜃
𝑡

(𝑥,𝑋
𝐿
) 𝛼
𝑡+1

]

= [
0

𝜆1 (𝑥, 𝛼𝑡+1, 𝛼
∗
) + 𝜆2 (𝑥, 𝛼𝑡+1, 𝛼

∗
)
] .

(25)

Consider the last two items of (24) firstly. If the immediate
reward is bounded and infinite discounted reward is applied,
the value function is bounded. Hence, |𝛼

𝑡
| < ∞.

If the system is BIBO stable, ∃Σ0, Σ1 ⊂ 𝑅
𝑛+𝑚, 𝑛,𝑚 are the

dimensions of the state space and action space, respectively,
∀𝑥0 ∈ Σ0, 𝑥∞ ∈ Σ1, the policy space is bounded.

According to Proposition 1, when the policy space is
bounded and |𝛼

𝑡
| < ∞, |𝜃

𝑡
| < ∞, there exists a constant 𝑐1,

so that

𝐸
󵄨󵄨󵄨󵄨󵄨
𝑉
󸀠

𝑡+1 (𝜑𝑡+1) 𝑌
2
𝑡+1

󵄨󵄨󵄨󵄨󵄨
≤ 𝑐1. (26)

In addition,

𝐸
󵄨󵄨󵄨󵄨󵄨
𝑌
2
𝑡+1

󵄨󵄨󵄨󵄨󵄨

2
= 𝐸

󵄨󵄨󵄨󵄨󵄨
[𝜆1 (𝑥, 𝛼𝑡+1, 𝛼

∗
) + 𝜆2 (𝑥, 𝛼𝑡+1, 𝛼

∗
)]

2󵄨󵄨󵄨󵄨󵄨

≤ 2𝐸 󵄨󵄨󵄨󵄨󵄨
𝜆
2
1 (𝑥, 𝛼𝑡+1, 𝛼

∗
)
󵄨󵄨󵄨󵄨󵄨
+ 2𝐸 󵄨󵄨󵄨󵄨󵄨

𝜆
2
2 (𝑥, 𝛼𝑡+1, 𝛼

∗
)
󵄨󵄨󵄨󵄨󵄨

≤ 𝑐2𝜑
2
𝑡+1 + 𝑐3𝜑

2
𝑡+1 ≤ 𝑐4𝑉 (𝜑

𝑡+1) .

(27)

From (26) and (27), we know that

𝐸
󵄨󵄨󵄨󵄨󵄨
𝑌
2
𝑡+1

󵄨󵄨󵄨󵄨󵄨

2
+𝐸

󵄨󵄨󵄨󵄨󵄨
𝑉
󸀠

𝑡+1 (𝜑𝑡+1) 𝑌
2
𝑡+1

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶3𝑉 (𝜑

𝑡+1) +𝐶3, (28)

where 𝐶3 = max{𝑐1, 𝑐4}. Similarly

𝐸
󵄨󵄨󵄨󵄨󵄨
𝑌
1
𝑡

󵄨󵄨󵄨󵄨󵄨

2
+𝐸

󵄨󵄨󵄨󵄨󵄨
𝑉
󸀠

𝑡
(𝜑
𝑡
) 𝑌

1
𝑡

󵄨󵄨󵄨󵄨󵄨
≤ 𝐶4𝑉 (𝜑

𝑡
) +𝐶4. (29)



6 Mathematical Problems in Engineering

According to Lemma 5.4.1 in [30], 𝐸𝑉(𝜑
𝑡
) < ∞, and

𝐸|𝑌
1
𝑡
|
2
< ∞ and 𝐸|𝑌

2
𝑡+1|

2
< ∞.

Now we focus on the first two items on the right of (24).
The first item 𝐸

𝑡
[𝑉
󸀠

𝑡
(𝜑
𝑡
)𝑌

1
𝑡
] is computed as

𝐸
𝑡
[𝑉
󸀠

𝑡
(𝜑
𝑡
) 𝑌

1
𝑡
]

= 𝐸
𝑡
{[(𝜑

1
𝑡
)
𝑇

(𝜑
2
𝑡
)
𝑇

] [
𝐼
𝐷

0

0 𝑘
∗

𝑡

][
−𝜑

1
𝑡

0
]}

= −
󵄨󵄨󵄨󵄨󵄨
𝜑
1
𝑡

󵄨󵄨󵄨󵄨󵄨

2
.

(30)

For the second item 𝐸
𝑡
[𝑉
󸀠

𝑡+1(𝜑𝑡+1)𝑌
2
𝑡+1], when the

state transition function is time invariant, it is true that
𝑃
𝑡+1𝐾𝜃

𝑡

(𝑥, 𝑋
𝐿
)𝛼
𝑡+1 = 𝑃

𝑡
𝐾
𝜃
𝑡

(𝑥, 𝑋
𝐿
)𝛼
𝑡+1, 𝛼𝑡+1 = 𝛼

𝑡
. Then we

have

𝐸
𝑡
𝜆1 (𝑥, 𝛼𝑡+1, 𝛼

∗
) = 𝐸
𝑡
[𝑘
ℵ

𝜃
𝑡

(𝑥,𝑋
𝐿
) 𝑃
𝑡
𝑘
𝜃
𝑡

(𝑥,𝑋
𝐿
) 𝛼
𝑡

− 𝑘
ℵ

𝜃
𝑡

(𝑥,𝑋
𝐿
) 𝑃
𝑡
𝑘
𝜃
𝑡

(𝑥,𝑋
𝐿
) 𝛼
∗
] = 𝑘
ℵ

𝜃
𝑡

(𝑥,𝑋
𝐿
)

⋅ 𝐸 [𝑃
𝑡
𝑘
𝜃
𝑡

(𝑥,𝑋
𝐿
) 𝛼
𝑡

−𝑃
𝑡
𝑘
𝜃
𝑡

(𝑥,𝑋
𝐿
) 𝛼
∗
] ≤ 𝑘
ℵ

𝜃
𝑡

(𝑥,𝑋
𝐿
)

⋅
󵄩󵄩󵄩󵄩󵄩
𝐸 [𝑃
𝑡
𝑘
𝜃
𝑡

(𝑥,𝑋
𝐿
) 𝛼
𝑡
−𝑃
𝑡
𝑘
𝜃
𝑡

(𝑥,𝑋
𝐿
) 𝛼
∗
]
󵄩󵄩󵄩󵄩󵄩
.

(31)

This inequality holds because of positive 𝑘ℵ
𝜃
𝑡

(𝑥, 𝑋), 𝑘ℵ
𝜃
𝑡
,𝑖
>

0, 𝑖 = 1, . . . , 𝐿. Define the norm ‖Δ(𝜃, ⋅)‖ = max
𝑥
|Δ(𝜃, 𝑥)|,

where |Δ(⋅)| is the derivative matrix norm of the vector 1 and
𝑥
∗
= argmax

𝑥
|Δ(𝜃, 𝑥)|. Then

󵄩󵄩󵄩󵄩󵄩
𝐸 [𝑃
𝑡
𝑘
𝜃
𝑡

(𝑥,𝑋
𝐿
) 𝛼
𝑡
−𝑃
𝑡
𝑘
𝜃
𝑡

(𝑥,𝑋
𝐿
) 𝛼
∗
]
󵄩󵄩󵄩󵄩󵄩

= max
𝑥

𝐸
𝑡

󵄨󵄨󵄨󵄨󵄨
[𝑃
𝑡
𝑘
𝜃
𝑡

(𝑥,𝑋
𝐿
) 𝛼
𝑡
−𝑃
𝑡
𝑘
𝜃
𝑡

(𝑥,𝑋
𝐿
) 𝛼
∗
]
󵄨󵄨󵄨󵄨󵄨

= max
𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐸
𝑡
[(𝑟 + 𝛽max

𝑎
󸀠

𝑘
𝜃
𝑡

(𝑥
󸀠
, 𝑋
𝐿
) 𝛼
𝑡
)

−(𝑟 + 𝛽max
𝑎
󸀠

𝑘
𝜃
𝑡

(𝑥
󸀠
, 𝑋
𝐿
) 𝛼
∗
)]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 𝛽

⋅max
𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝐸
𝑡
[max
𝑎
󸀠

𝑘
𝜃
𝑡

(𝑥
󸀠
, 𝑋
𝐿
) 𝛼
𝑡

−max
𝑎
󸀠

𝑘
𝜃
𝑡

(𝑥
󸀠
, 𝑋
𝐿
) 𝛼
∗
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 𝛽max
𝑥

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∫
𝑠
󸀠

𝑝 (𝑠
󸀠
| 𝑥)

⋅ [max
𝑎
󸀠

𝑘
𝜃
𝑡

(𝑥
󸀠
, 𝑋
𝐿
) 𝛼
𝑡
−max
𝑎
󸀠

𝑘
𝜃
𝑡

(𝑥
󸀠
, 𝑋
𝐿
) 𝛼
∗
] 𝑑𝑠
󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ 𝛽max
𝑥

∫
𝑠
󸀠

𝑝 (𝑠
󸀠
| 𝑥)

⋅

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
[max
𝑎
󸀠

𝑘
𝜃
𝑡

(𝑥
󸀠
, 𝑋
𝐿
) 𝛼
𝑡
−max
𝑎
󸀠

𝑘
𝜃
𝑡

(𝑥
󸀠
, 𝑋
𝐿
) 𝛼
∗
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑠
󸀠

≤ 𝛽max
𝑥

∫
𝑠
󸀠

𝑝 (𝑠
󸀠
| 𝑥)

⋅max
𝑎
󸀠

󵄨󵄨󵄨󵄨󵄨
𝑘
𝜃
𝑡

(𝑥
󸀠
, 𝑋
𝐿
) 𝛼
𝑡
− 𝑘
𝜃
𝑡

(𝑥
󸀠
, 𝑋
𝐿
) 𝛼
∗󵄨󵄨󵄨󵄨󵄨

𝑑𝑠
󸀠
= 𝛽

⋅max
𝑥

∫
𝑠
󸀠

𝑝 (𝑠
󸀠
| 𝑥)max

𝑎
󸀠

󵄨󵄨󵄨󵄨󵄨
𝑘
𝜃
𝑡

(𝑥
󸀠
, 𝑋
𝐿
) (𝛼
𝑡
− 𝛼
∗
)
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠
󸀠

= 𝛽max
𝑥

∫
𝑠
󸀠

𝑝 (𝑠
󸀠
| 𝑥)

⋅max
𝑎
󸀠

󵄨󵄨󵄨󵄨󵄨
𝐸
𝑡
[𝑃
𝑡
𝑘
𝜃
𝑡

(𝑥
󸀠
, 𝑋
𝐿
) 𝛼
𝑡
− 𝑃
𝑡
𝑘
𝜃
𝑡

(𝑥
󸀠
, 𝑋
𝐿
) 𝛼
∗
]
󵄨󵄨󵄨󵄨󵄨
𝑑𝑠
󸀠

≤ 𝛽max
𝑥

󵄨󵄨󵄨󵄨󵄨
𝑘
𝜃
𝑡

(𝑥,𝑋
𝐿
) (𝛼
𝑡
−𝛼
∗
)
󵄨󵄨󵄨󵄨󵄨
= 𝛽

󵄨󵄨󵄨󵄨󵄨
𝑘
𝜃
𝑡

(𝑥
∗
, 𝑋
𝐿
)

⋅ 𝜑
2
𝑡

󵄨󵄨󵄨󵄨󵄨
.

(32)

Hence

𝐸
𝑡
𝜆1 (𝑥, 𝛼𝑡+1, 𝛼

∗
) ≤ 𝛽𝑘

ℵ

𝜃
𝑡

(𝑥
∗
, 𝑋
𝐿
)
󵄨󵄨󵄨󵄨󵄨
𝑘
𝜃
𝑡

(𝑥
∗
, 𝑋
𝐿
) 𝜑

2
𝑡

󵄨󵄨󵄨󵄨󵄨
. (33)

On the other hand,

𝐸
𝑡
𝜆2 (𝑥, 𝛼𝑡, 𝛼

∗
) = 𝐸
𝑡
[𝑘
ℵ

𝜃
𝑡

(𝑥,𝑋
𝐿
) 𝑃
𝑡
𝑘
𝜃
𝑡

(𝑥,𝑋
𝐿
) 𝛼
∗

− 𝑘
ℵ

𝜃
𝑡

(𝑥,𝑋
𝐿
) 𝑘
𝜃
𝑡

(𝑥,𝑋
𝐿
) 𝛼
𝑡
]

= 𝐸
𝑡
[𝑘
ℵ

𝜃
𝑡

(𝑥,𝑋
𝐿
) 𝑃
𝑡
𝑘
𝜃
𝑡

(𝑥,𝑋
𝐿
) 𝛼
∗

− 𝑘
ℵ

𝜃
𝑡

(𝑥,𝑋
𝐿
) 𝑘
𝜃
𝑡

(𝑥,𝑋
𝐿
) 𝛼
∗
] + 𝑘
ℵ

𝜃
𝑡

(𝑥,𝑋
𝐿
)

⋅ 𝑘
𝜃
𝑡

(𝑥,𝑋
𝐿
) 𝛼
∗
− 𝑘
ℵ

𝜃
𝑡

(𝑥,𝑋
𝐿
) 𝑘
𝜃
𝑡

(𝑥,𝑋
𝐿
) 𝛼
𝑡

= − 𝑘
ℵ

𝜃
𝑡

(𝑥,𝑋
𝐿
) [𝑘
𝜃
𝑡

(𝑥,𝑋
𝐿
) 𝜑

2
𝑡
−𝐸
𝑡
𝜆3 (𝑥, 𝜃𝑡, 𝜃

∗
)] ,

(34)

where 𝜆3(𝑥, 𝜃𝑡, 𝜃
∗
) = 𝑃

𝑡
𝑘
𝜃
𝑡

(𝑥, 𝑋
𝐿
)𝛼
∗
− 𝑘
𝜃
𝑡

(𝑥, 𝑋
𝐿
)𝛼
∗ is the

value function error caused by the estimated hyperparame-
ters.

Substituting (33) and (34) into 𝐸
𝑡
[𝑉
󸀠

𝑡+1(𝜑𝑡+1)𝑌
2
𝑡+1] yields

𝐸
𝑡
[𝑉
󸀠

𝑡+1 (𝜑𝑡+1) 𝑌
2
𝑡+1] = 𝐸

𝑡
{[𝑘
𝜃
𝑡

(𝑥
∗
, 𝑋
𝐿
) 𝜑

2
𝑡
]
𝑇

⋅ 𝑘
𝜃
𝑡

(𝑥
∗
, 𝑋
𝐿
) [𝜆1 (𝑥, 𝛼𝑡+1, 𝛼

∗
) + 𝜆2 (𝑥, 𝛼𝑡+1, 𝛼

∗
)]}

= [𝑘
𝜃
𝑡

(𝑥
∗
, 𝑋
𝐿
) 𝜑

2
𝑡
]
𝑇

𝑘
𝜃
𝑡

(𝑥
∗
, 𝑋
𝐿
)

⋅ [𝐸
𝑡
𝜆1 (𝑥, 𝛼𝑡+1, 𝛼

∗
) + 𝐸
𝑡
𝜆2 (𝑥, 𝛼𝑡+1, 𝛼

∗
)]

≤ 𝛽 [𝑘
𝜃
𝑡

(𝑥
∗
, 𝑋
𝐿
) 𝜑

2
𝑡
]
𝑇

𝑘
𝜃
𝑡

(𝑥
∗
, 𝑋
𝐿
) 𝑘
ℵ

𝜃
𝑡

(𝑥
∗
, 𝑋
𝐿
)

⋅
󵄨󵄨󵄨󵄨󵄨
𝑘
𝜃
𝑡

(𝑥
∗
, 𝑋
𝐿
) 𝜑

2
𝑡

󵄨󵄨󵄨󵄨󵄨
− [𝑘
𝜃
𝑡

(𝑥
∗
, 𝑋
𝐿
) 𝜑

2
𝑡
]
𝑇

𝑘
𝜃
𝑡

(𝑥
∗
, 𝑋
𝐿
)

⋅ 𝑘
ℵ

𝜃
𝑡

(𝑥
∗
, 𝑋
𝐿
) [𝑘
𝜃
𝑡

(𝑥
∗
, 𝑋
𝐿
) 𝜑

2
𝑡
−𝐸
𝑡
𝜆3 (𝑥
∗
, 𝜃
𝑡
, 𝜃
∗
)]

≤ − (1−𝛽)
󵄨󵄨󵄨󵄨󵄨
𝑘
𝜃
𝑡

(𝑥
∗
, 𝑋
𝐿
) 𝜑

2
𝑡

󵄨󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨󵄨󵄨
[𝑘
𝜃
𝑡

(𝑥
∗
, 𝑋
𝐿
) 𝜑

2
𝑡
]
𝑇

⋅ 𝐸
𝑡
𝜆3 (𝑥
∗
, 𝜃
𝑡
, 𝜃
∗
)
󵄨󵄨󵄨󵄨󵄨󵄨
.

(35)
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Obviously, if the following inequality is satisfied,

𝜂
2
𝑡

󵄨󵄨󵄨󵄨󵄨󵄨
[𝑘
𝜃
𝑡

(𝑥
∗
, 𝑋
𝐿
) 𝜑

2
𝑡
]
𝑇

𝐸
𝑡
𝜆3 (𝑥
∗
, 𝜃
𝑡
, 𝜃
∗
)
󵄨󵄨󵄨󵄨󵄨󵄨

< 𝜂
1
𝑡

󵄨󵄨󵄨󵄨󵄨
𝜑
1
𝑡

󵄨󵄨󵄨󵄨󵄨

2
+ 𝜂

2
𝑡
(1−𝛽)

󵄨󵄨󵄨󵄨󵄨
𝑘
𝜃
𝑡

(𝑥
∗
, 𝑋
𝐿
) 𝜑

2
𝑡

󵄨󵄨󵄨󵄨󵄨

2
(36)

there exists a positive const 𝛿, such that the first two items on
the right of (24) satisfy

𝜂
1
𝑡
𝐸
𝑡
[𝑉
󸀠

𝑡
(𝜑
𝑡
) 𝑌

1
𝑡
] + 𝜂

2
𝑡
𝐸
𝑡
[𝑉
󸀠

𝑡+1 (𝜑𝑡+1) 𝑌
2
𝑡+1] ≤ − 𝛿. (37)

According to Theorem 5.4.2 in [30], the iterative process is
convergent; namely, 𝜑

𝑡

𝑤.𝑝.1
󳨀󳨀󳨀󳨀→ 0.

Remark 3. Let us check the final convergence position.
Obviously, 𝜑

𝑡

𝑤.𝑝.1
󳨀󳨀󳨀󳨀→ 0, [ 𝛼𝑡

𝜃
𝑡

]
𝑤.𝑝.1
󳨀󳨀󳨀󳨀→ [

𝛼
∗

𝑓(𝛼
∗
)
]. This means the

equilibriumof the critic networkmeets𝐸
𝑡
[𝑃
𝑡
𝐾
𝜃
∗(𝑥, 𝑋

𝐿
)𝛼
∗
] =

𝐾
𝜃
∗(𝑥, 𝑋

𝐿
)𝛼
∗, where 𝜃

∗
= 𝑓(𝛼

∗
). And the equilibrium of

hyperparameters 𝜃∗ = 𝑓(𝛼
∗
) is the solution of evidencemax-

imization that max
𝜑
(𝐿(𝜑)) = max

𝜑
((1/2)𝑦

𝑇
𝐾
−1
𝜃
∗ (𝑋𝐿, 𝑋𝐿)𝑦 +

(1/2)log|𝐶| + (𝑛/2)log2𝜋), where 𝑦 = 𝐾
−1
𝜃
∗ (𝑋𝐿, 𝑋𝐿)𝛼

∗.

Remark 4. It is clear that the selection of the samples is one
of the key issues. Since now all samples have values according
to two-phase iteration, according to the information-based
criterion, it is convenient to evaluate samples and refine the
set by arranging relative more samples near the equilibrium
orwith great gradient of the value function, so that the sample
set is better to describe the distribution of value function.

Remark 5. Since the two-phase iteration belongs to value
iteration, the initial policy of the algorithm does not need to
be stable. To ensure BIBO in practice, we need a mechanism
to clamp the output of system, even though the system will
not be smooth any longer.

Theorem 2 gives the iteration principle for critic network
learning. Based on the critic network, with proper objective
defined, such as minimizing the expected total discounted
reward [15], HDP or DHP update is applied to optimize
actor network. Since this paper focuses on ACD and more
importantly the update process of actor network does not
affect the convergence of critic network, though maybe it
induces premature or local optimization, the gradient update
of actor is not necessary. Hence a simple optimum seeking is
applied to get optimal actions w.r.t. sample states, and then an
actor network based onGaussian kernel is generated based on
these optimal state-action pairs.

Up to now we have built a critic-actor architecture which
is namedGaussian-kernel-based Approximate Dynamic Pro-
gramming (GK-ADP for short) and shown in Algorithm 1. A
span 𝐾 is introduced, so that hyperparameters are updated
every 𝐾 times of 𝛼 update. If 𝐾 > 1, two phases are
asynchronous. From the view of stochastic approximation,
this asynchronous learning does not change the convergence
condition (36) but benefit computational cost of hyperparam-
eters learning.

4. Simulation and Discussion

In this section, we propose some numerical simulations
about continuous control to illustrate the special properties
and the feasibility of the algorithm, including the necessity
of two phases learning, the specifical properties comparing
with traditional kernel-based ACDs, and the performance
enhancement resulting from online refinement of sample set.

Before further discussion, we firstly give common setup
in all simulations:

(i) The span 𝐾 = 50.
(ii) To make output bounded, once a state is out of the

boundary, the system is reset randomly.
(iii) The exploration-exploitation tradeoff is left out of

account here. During learning process, all actions are
selected randomly within limited action space. Thus
the behavior of the system is totally unordered during
learning.

(iv) The same ALD-based sparsification in [15] is used to
determine the initial sample set, in which 𝑤

𝑖
= 1.8,

V0 = 0, and V1 = 0.5 empirically.
(v) The sampling time and control interval are set to

0.02 s.

4.1. The Necessity of Two-Phase Learning. The proof of
Theorem 2 shows that properly determined learning rates of
phases 1 and 2 guarantee condition (36). Here we propose a
simulation to show how the learning rates in phases 1 and 2
affect the performance of the learning.

Consider a simple single homogeneous inverted pendu-
lum system:

̇𝑠1 = 𝑠2

̇𝑠2 =
(𝑀
𝑝
𝑔 sin (𝑠1) − 𝜏cos (𝑠1)) 𝑑

𝑀
𝑝
𝑑

,

(38)

where 𝑠1 and 𝑠2 represent the angle and its speed, 𝑀
𝑝

=

0.1 kg, 𝑔 = 9.8m/s2, 𝑑 = 0.2m, respectively, and 𝜏 is a
horizontal force acting on the pole.

We test the success rate under different learning rates.
Since, during the learning the action is always selected
randomly, we have to verify the optimal policy after learning;
that is, an independent policy test is carried out to test the
actor network. Thus the success of one time of learning
means in the independent test the pole can be swung up
and maintained within [−0.02, 0.02] rad for more than 200
iterations.

In the simulation, 60 state-action pairs are collected to
serve as the sample set, and the learning rates are set to 𝜂

2
𝑡
=

0.01/(1 + 𝑡)
0.018, 𝜂1

𝑡
= 𝑎/(1 + 𝑡

0.018
), where 𝑎 is varying from 0

to 0.12.
The learning is repeated 50 times in order to get the

average performance, where the initial states of each run
are randomly selected within the bound [−0.4, 0.4] and
[−0.5, 0.5] w.r.t. the dimensions of 𝑠1 and 𝑠2. The action space
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Initialize:
𝜃: hyperparameters of Gaussian kernel model
𝑋
𝐿
= {𝑥
𝑖
| 𝑥
𝑖
= (𝑠
𝑖
, 𝑎
𝑖
)}
𝐿

𝑖=1
: sample set

𝜋(𝑠0): initial policy
𝜂
1
t , 𝜂

2
t : learning step size

Let 𝑡 = 0;
Loop:

𝑓𝑜𝑟 k = 1 𝑡𝑜 𝐾 𝑑𝑜

𝑡 = t + 1;
𝑎
𝑡
= 𝜋(𝑠

𝑡
)

Get the reward 𝑟
𝑡

Observe next state 𝑠
𝑡+1

Update 𝛼 according to (12)
Update the policy 𝜋 according to optimum seeking

𝑒𝑛𝑑 𝑓𝑜𝑟

Update 𝜃 according to (12)
Until the termination criterion is satisfied

Algorithm 1: Gaussian-kernel-based Approximate Dynamic Programming.
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Figure 1: Success times over 50 runs under different learning rate
𝜂
1
𝑡
.

is bounded within [−0.5, 0.5]. And, in each run, the initial
hyperparameters are set to [𝑒

−2.5
𝑒
0.5

𝑒
0.9

𝑒
−1

𝑒
0.001

].
Figure 1 shows the result of success rates. Clearly, with

𝜂
2
𝑡
fixed, different 𝜂1

𝑡
’s affect the performance significantly. In

particular, without the learning of hyperparameters, that is,
𝜂
1
𝑡
= 0, there are only 6 successful runs over 50 runs.With the

increasing of 𝑎 the success rate increases till 1 when 𝑎 = 0.08.
But as 𝑎 goes on increasing, the performance becomes worse.

Hence both phases are necessary if the hyperparameters
are not initialized properly. It should be noted that the
learning rates w.r.t. two phases need to be regulated carefully
in order to guarantee condition (36), which leads the learning
process to the equilibrium in Remark 3 but not to some kind
of boundary where the actor always executed the maximal or
minimal actions.
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Figure 2: The average evolution processes over 50 runs w.r.t.
different 𝜂1

𝑡
.

If all samples’ values on each iteration are summed up and
all cumulative values w.r.t. iterations are depicted in series,
then we have Figure 2. The evolution process w.r.t. the best
parameter 𝑎 = 0.08 is marked by the darker diamond. It is
clear that, even with different 𝜂1

𝑡
, the evolution processes of

the samples’ value learning are similar. That means, due to
BIBO property, the samples’ values must be finally bounded
and convergent. However, as mentioned above, it does not
mean that the learning process converges to the proper
equilibrium.
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S1

S3

Figure 3: One-dimensional inverted pendulum.

4.2. Value Iteration versus Policy Iteration. As mentioned in
Algorithm 1, the value iteration in critic network learning
does not depend on the convergence of the actor network,
and, compared with HDP or DHP, the direct optimum
seeking for actor network seems a little aimless. To test its
performance and discuss its special characters of learning, a
comparison between GK-ADP and KHDP is carried out.

The control objective in the simulation is a one-
dimensional inverted pendulum, where a single-stage
inverted pendulum is mounted on a cart which is able to
move linearly, just as Figure 3 shows.

The mathematic model is given as

̇𝑠1 = 𝑠2 + 𝜀,

̇𝑠2 =
𝑔 sin (𝑠1) − 𝑀

𝑝
𝑑𝑠

2
2 cos (𝑠1) sin (𝑠1) /𝑀

𝑑 (4/3 − 𝑀
𝑝
cos2 (𝑠1) /𝑀)

+
cos (𝑠1) /𝑀

𝑑 (4/3 − 𝑀
𝑝
cos2 (𝑠1) /𝑀)

𝑢,

̇𝑠3 = 𝑠4,

̇𝑠4 =
𝑢 + 𝑀

𝑝
𝑑 (𝑠

2
2 sin (𝑠1) − ̇𝑠2 cos (𝑠1))

𝑀
,

(39)

where 𝑠1 to 𝑠4 represent the state of angle, angle speed, linear
displacement, and linear speed of the cart, respectively, 𝑢
represents the force acting on the cart,𝑀 = 0.2 kg, 𝑑 = 0.5m,
𝜀 ∼ 𝑈(−0.02, 0.02), and other denotations are the same as
(38).

Thus the state-action space is 5D space, much larger than
that in simulation 1.The configurations of the both algorithms
are listed as follows:

(i) A small sample set with 50 samples is adopted to build
critic network, which is determined by ALD-based
sparsification.

(ii) For both algorithms, the state-action pair is limited to
[−0.3, 0.3], [−1, 1], [−0.3, 0.3], [−2, 2], [−3, 3] w.r.t. 𝑠1
to 𝑠4 and 𝑢.

(iii) In GK-ADP, the learning rates are 𝜂1
𝑡
= 0.02/(1+𝑡

0.01
)

and 𝜂
2
𝑡
= 0.02/(1 + 𝑡)

0.02.
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Figure 4: The comparison of the average evolution processes over
100 runs.

(iv) The KHDP algorithm in [15] is chosen as the compar-
ison, where the critic network uses Gaussian kernels.
To get the proper Gaussian parameters, a series of 𝜎 as
0.9, 1.2, 1.5, 1.8, 2.1, and 2.4 are tested in the simulation.
The elements of weights 𝛼 are initialized randomly in
[−0.5, 0.5], the forgetting factor in RLS-TD(0) is set to
𝜇 = 1, and the learning rate in KHDP is set to 0.3.

(v) All experiments run 100 times to get the average per-
formance. And in each run there are 10000 iterations
to learn critic network.

Before further discussion, it should be noted that it makes
no sense to figure out ourselves with which algorithm is
better in learning performance, because, besides the debate
of policy iteration versus value iteration, there are too many
parameters in the simulation configuration affecting learning
performance. So the aim of this simulation is to illustrate the
learning characters of GK-ADP.

However to make the comparison as fair as possible, we
regulate the learning rates of both algorithms to get similar
evolution processes. Figure 4 shows the evolution processes
of GK-ADP and KHDPs under different 𝜎, where the 𝑦-axis
in the left represents the cumulatedweights,∑

𝑖
𝛼
𝑖
, of the critic

network in kernel ACD, and the other 𝑦-axis represents the
cumulated values of the samples, ∑

𝑖
𝑄(𝑥
𝑖
), 𝑥
𝑖
∈ 𝑋
𝐿
, in GK-

ADP. It implies although, with different units, the learning
processes under both learning algorithms converge nearly at
the same speed.

Then the success rates of all algorithms are depicted
in Figure 5. The left six bars represent the success rates of
KHDP with different 𝜎. With superiority argument left aside,
we find that, such fixed 𝜎 in KHDP is very similar to the
fixed hyperparameters 𝜃, which needs to be set properly
in order to get higher success rate. But unfortunately there
is no mechanism in KHDP to regulate 𝜎 online. On the



10 Mathematical Problems in Engineering

0.9 1.2 1.5 1.8 2.1 2.4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Parameter 𝜎 in ALD-based sparsification

Su
cc

es
s r

at
e o

ve
r 1

00
 ru

ns

67 68
76 75

58 57

96

GK-ADP

Figure 5: The success rates w.r.t. all algorithms over 100 runs.

contrary, the two-phase iteration introduces the update of
hyperparameters into critic network, which is able to drive
hyperparameters to better values, even with the not so good
initial values. In fact, this two-phase update can be viewed as
a kind of kernel ACD with dynamic 𝜎, when Gaussian kernel
is used.

To discuss the performance in deep, we plot the test
trajectories resulting from the actors, which are optimized by
GK-ADP and KHDP, in Figures 6(a) and 6(b), respectively,
where the start state is set to [0.2 0 −0.2 0].

Apparently the transition time of GK-ADP is much
smaller than KHDP. We think, besides the possible well
regulated parameters, an important reason is nongradient
learning for actor network.

The critic learning only depends on exploration-exploita-
tion balance but not the convergence of actor learning. If
exploration-exploitation balance is designed without actor
network output, the learning processes of actor and critic
networks are relatively independent of each other, and then
there are alternatives to gradient learning for actor network
optimization, for example, the direct optimum seeking Gaus-
sian regression actor network in GK-ADP.

Such direct optimum seeking may result in nearly non-
smooth actor network, just like the force output depicted in
the second plot of Figure 6(a). To explain this phenomenon,
we can find the clue from Figure 7, which illustrates the best
actions w.r.t. all sample states according to the final actor
network. It is reasonable that the force direction is always the
same to the pole angle and contrary to the cart displacement.
And clearly the transition interval from negative limit −3𝑁 to
positive 3𝑁 is very short. Thus the output of actor network,
resulting from Gaussian kernels, intends to control angle
bias as quickly as possible, even though such quick control
sometimes makes the output force a little nonsmooth.

It is obvious that GK-ADP is with high efficiency but
also with potential risks, such as the impact to actuators.
Hence how to design exploration-exploitation balance to
satisfy Theorem 2 and how to design actor network learning

to balance efficiency and engineering applicability are two
important issues in future work.

Finally we check the samples values, which are depicted
in Figure 8, where only dimensions of pole angle and linear
displacement are depicted. Due to the definition of immedi-
ate reward, the closer the states to the equilibrium are, the
smaller the 𝑄 value is.

If we execute 96 successful policies one by one and record
all final cart displacements and linear speed, just as Figure 9
shows, the shortage of this sample set is uncovered that, even
with good convergence of pole angle, the optimal policy can
hardly drive cart back to zero point.

To solve this problem and improve performance, besides
optimizing learning parameters, Remark 4 implies that
another and maybe more efficient way is refining sample set
based on the samples’ values. We will investigate it in the
following subsection.

4.3. Online Adjustment of Sample Set. Due to learning sam-
ple’s value, it is possible to assess whether the samples are
chosen reasonable. In this simulation we adopt the following
expected utility [26]:

𝑈 (𝑥) = 𝜌ℎ (𝐸 [𝑄 (𝑥) | 𝑋𝐿])

+
𝛽

2
log (var [𝑄 (𝑥) | 𝑋𝐿]) ,

(40)

where ℎ(⋅) is a normalization function over sample set and
𝜌 = 1, 𝛽 = 0.3 are coefficients.

Let 𝑁add represent the number of samples added to the
sample set, 𝑁limit the size limit of the sample set, and 𝑇(𝑥) =

𝑥(0), 𝑥(1), . . . , 𝑥(𝑇
𝑒
) the state-action pair trajectory during

GK-ADP learning, where 𝑇
𝑒
denotes the end iteration of

learning. The algorithm to refine sample set is presented as
Algorithm 2.

Since in simulation 2 we have carried out 100 runs of
experiment for GK-ADP, 100 sets of sample values w.r.t.
the same sample states are obtained. Now let us apply
Algorithm 2 to these resulted sample sets, where 𝑇(𝑥) is
picked up from the history trajectory of state-action pairs in
each run, and 𝑁add = 10, 𝑁limit = 60, in order to add 10
samples into sample set.

We repeat all 100 runs of GK-ADP again, with the same
learning rates 𝜂

1 and 𝜂
2. Based on 96 successful runs in

simulation 2, 94 runs are successful in obtaining control
policies swinging up pole. Figure 10(a) shows the average
evolutional process of sample values over 100 runs, where
the first 10000 iterations display the learning process in
simulation 2 and the second 8000 iterations display the
learning process after adding samples. Clearly the cumulative
𝑄 value behaves a sudden increase after sample was added
and almost keeps steady afterwards. It implies, even with
more samples added, there is not toomuch to learn for sample
values.

However if we check the cart movement, we will find
the enhancement brought by the change of sample set. For
the 𝑗th run, we have two actor networks resulting from GK-
ADP before and after adding samples. Using these actors, We
carry out the control test, respectively, and collect the absolute
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(a) The resulted control performance using GK-ADP
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(b) The resulted control performance using KHDP

Figure 6: The outputs of the actor networks resulting from GK-ADP and KHDP.
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Figure 7: The final best policies w.r.t. all samples.
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Figure 8:The𝑄 values projected on to dimensions of pole angle (𝑠1)
and linear displacement (𝑠3) w.r.t. all samples.
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Figure 9: The final cart displacement and linear speed in the test of
successful policy.

values of cart displacement, denoted by 𝑆𝑏3(𝑗) and 𝑆
𝑎

3(𝑗), at the
moment that the pole has been swung up for 100 instants. We
define the enhancement as

𝐸 (𝑗) =
𝑆
𝑏

3 (𝑗) − 𝑆
𝑎

3 (𝑗)

𝑆𝑏3 (𝑗)
. (41)

Obviously the positive enhancement indicates that the
actor network after adding samples behaves better. As all
enhancements w.r.t. 100 runs are illustrated together, just
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𝑓𝑜𝑟 l = 1 𝑡𝑜 𝑡ℎ𝑒 𝑒𝑛𝑑 𝑜𝑓 𝑇(𝑥)

Calculate 𝐸[𝑄(𝑥(𝑙)) | 𝑋
𝐿
] and var[𝑄(𝑥𝑙) | 𝑋

𝐿
] using (6) and (7)

Calculate 𝑈(𝑥(𝑙)) using (40)
𝑒𝑛𝑑 𝑓𝑜𝑟 𝑙

Sort all 𝑈(𝑥(𝑙)), 𝑙 = 1, . . . , 𝑇
𝑒
in ascending order

Add the first𝑁add state-action pairs to sample set to get extended set𝑋
𝐿+𝑁add

𝑖𝑓 L +𝑁add > 𝑁limit

Calculate hyperparameters based on 𝑋
𝐿+𝑁add

𝑓𝑜𝑟 l = 1 𝑡𝑜 𝐿 +𝑁add

Calculate 𝐸[𝑄(𝑥(𝑙)) | 𝑋
𝐿+𝑁add

] and var[𝑄(𝑥𝑙) | 𝑋
𝐿+𝑁add

] using (6) and (7)
Calculate 𝑈(𝑥(𝑙)) using (40)

𝑒𝑛𝑑 𝑓𝑜𝑟 𝑙

Sort all 𝑈(𝑥(𝑙)), 𝑙 = 1, . . . , 𝐿 + 𝑁add in descending order
Delete the first 𝐿 +𝑁add − 𝑁limit samples to get refined set 𝑋

𝑁limit

𝑒𝑛𝑑 𝑖𝑓

Algorithm 2: Refinement of sample set.
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(a) The average evolution process of 𝑄 values before and after adding
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(b) The enhancement of the control performance about cart displacement
after adding samples

Figure 10: Learning performance of GK-ADP if sample set is refined by adding 10 samples.

as Figure 10(b) shows, almost all cart displacements as the
pole is swung up are enhanced more or less except for 8
times of failure. Hence with proper principle based on the
sample values, the sample set can be refined online in order
to enhance performance.

Finally let us check which state-action pairs are added
into sample set. We put all added samples over 100 runs
together and depict their values in Figure 11(a), where the
values are projected onto the dimensions of pole angle
and cart displacement. If only concerning the relationship
between 𝑄 values and pole angle, just as Figure 11(b) shows,
we find that the refinement principle intends to select the
samples a little away from the equilibrium and near the
boundary −0.4, due to the ratio between 𝜌 and 𝛽.

5. Conclusions and Future Work

ADPmethods are among the most promising research works
on RL in continuous environment to construct learning
systems for nonlinear optimal control. This paper presents
GK-ADP with two-phase value iteration which combines the
advantages of kernel ACDs and GP-based value iteration.

The theoretical analysis reveals that, with proper learning
rates, two-phase iteration is good atmakingGaussian-kernel-
based critic network converge to the structure with optimal
hyperparameters and approximate all samples’ values.

A series of simulations are carried out to verify the
necessity of two-phase learning and illustrate properties of
GK-ADP. Finally the numerical tests support the viewpoint
that the assessment of samples’ values provides the way to
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Figure 11: The 𝑄 values w.r.t. all added samples over 100 runs.

refine sample set online, in order to enhance the performance
of critic-actor architecture during operation.

However there are some issues needed to be concerned
in future. The first is how to guarantee condition (36) during
learning, which is now determined by empirical ways. The
second is the balance between exploration and exploitation,
which is always an opening question, but seemsmore notable
here because bad exploration-exploitation principle will lead
two-phase iteration to failure not only to slow convergence.
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