46 research outputs found

    Comparative study on the deterioration of granite under microwave irradiation and resistance-heating treatment

    Get PDF
    To investigate the deterioration of granite under microwave irradiation and heat transfer, granite specimens were heated up to 400-1000 °C and then kept for 15 min. Uniaxial compressive strength testing results demonstrate a similar variation in two groups in 400-900 °C, which is initial strengthening (less than 500 °C), subsequent weakening (500-600 °C) and final stabilizing (600-900 °C). Furthermore, the specimen irradiated by microwaves presented a second decline at 1000 °C. Compared to heat transfer, microwave irradiation can reduce the strengthening due to localized transition plasticity and further promotes the deterioration of rock structure in weakening stage. TG/DSC results indicate that the strengthening is related to the iron mineral transition. The formation of porous glass substance which is mainly composed of feldspar and biotite. Furthermore, temperature-controlled microwave irradiation induced the variation of feldspar crystallinities, which is consistent with the corresponding UCS data, especially the plagioclase. In practical application, microwaves can be used to irradiate the vulnerable positions (surface edge and cleavage) and kept the whole rock mass around 600 °C

    Anticonvulsant activities of α-asaronol ((E)-3'-hydroxyasarone), an active constituent derived from α-asarone.

    Get PDF
    BACKGROUND: Epilepsy is one of chronic neurological disorders that affects 0.5-1.0% of the world's population during their lifetime. There is a still significant need to develop novel anticonvulsant drugs that possess superior efficacy, broad spectrum of activities and good safety profile. METHODS: α-Asaronol and two current antiseizure drugs (α-asarone and carbamazepine (CBZ)) were assessed by in vivo anticonvulsant screening with the three most employed standard animal seizure models, including maximal electroshock seizure (MES), subcutaneous injection-pentylenetetrazole (PTZ)-induced seizures and 3-mercaptopropionic acid (3-MP)-induced seizures in mice. Considering drug safety evaluation, acute neurotoxicity was assessed with minimal motor impairment screening determined in the rotarod test, and acute toxicity was also detected in mice. RESULTS: In our results, α-asaronol displayed a broad spectrum of anticonvulsant activity (ACA) and showed better protective indexes (PI = 11.11 in MES, PI = 8.68 in PTZ) and lower acute toxicity (LD50 = 2940 mg/kg) than its metabolic parent compound (α-asarone). Additionally, α-asaronol displayed a prominent anticonvulsant profile with ED50 values of 62.02 mg/kg in the MES and 79.45 mg/kg in the sc-PTZ screen as compared with stiripentol of ED50 of 240 mg/kg and 115 mg/kg in the relevant test, respectively. CONCLUSION: The results of the present study revealed α-asaronol can be developed as a novel molecular in the search for safer and efficient anticonvulsants having neuroprotective effects as well as low toxicity. Meanwhile, the results also suggested that α-asaronol has great potential to develop into another new aromatic allylic alcohols type anticonvulsant drug for add-on therapy of Dravet's syndrome

    PathNarratives: Data annotation for pathological human-AI collaborative diagnosis

    Get PDF
    Pathology is the gold standard of clinical diagnosis. Artificial intelligence (AI) in pathology becomes a new trend, but it is still not widely used due to the lack of necessary explanations for pathologists to understand the rationale. Clinic-compliant explanations besides the diagnostic decision of pathological images are essential for AI model training to provide diagnostic suggestions assisting pathologists practice. In this study, we propose a new annotation form, PathNarratives, that includes a hierarchical decision-to-reason data structure, a narrative annotation process, and a multimodal interactive annotation tool. Following PathNarratives, we recruited 8 pathologist annotators to build a colorectal pathological dataset, CR-PathNarratives, containing 174 whole-slide images (WSIs). We further experiment on the dataset with classification and captioning tasks to explore the clinical scenarios of human-AI-collaborative pathological diagnosis. The classification tasks show that fine-grain prediction enhances the overall classification accuracy from 79.56 to 85.26%. In Human-AI collaboration experience, the trust and confidence scores from 8 pathologists raised from 3.88 to 4.63 with providing more details. Results show that the classification and captioning tasks achieve better results with reason labels, provide explainable clues for doctors to understand and make the final decision and thus can support a better experience of human-AI collaboration in pathological diagnosis. In the future, we plan to optimize the tools for the annotation process, and expand the datasets with more WSIs and covering more pathological domains

    Aggregation-Induced Emission (AIE), Life and Health

    Get PDF
    Light has profoundly impacted modern medicine and healthcare, with numerous luminescent agents and imaging techniques currently being used to assess health and treat diseases. As an emerging concept in luminescence, aggregation-induced emission (AIE) has shown great potential in biological applications due to its advantages in terms of brightness, biocompatibility, photostability, and positive correlation with concentration. This review provides a comprehensive summary of AIE luminogens applied in imaging of biological structure and dynamic physiological processes, disease diagnosis and treatment, and detection and monitoring of specific analytes, followed by representative works. Discussions on critical issues and perspectives on future directions are also included. This review aims to stimulate the interest of researchers from different fields, including chemistry, biology, materials science, medicine, etc., thus promoting the development of AIE in the fields of life and health

    The Overseeing Mother: Revisiting the Frontal-Pose Lady in the Wu Family Shrines in Second Century China

    Get PDF
    Located in present-day Jiaxiang in Shandong province, the Wu family shrines built during the second century in the Eastern Han dynasty (25–220) were among the best-known works in Chinese art history. Although for centuries scholars have exhaustively studied the pictorial programs, the frontal-pose female image situated on the second floor of the central pavilion carved at the rear wall of the shrines has remained a question. Beginning with the woman’s eyes, this article demonstrates that the image is more than a generic portrait (“hard motif ”), but rather represents “feminine overseeing from above” (“soft motif ”). This synthetic motif combines three different earlier motifs – the frontal-pose hostess enjoying entertainment, the elevated spectator, and the Queen Mother of the West. By creatively fusing the three motifs into one unity, the Jiaxiang artists lent to the frontal-pose lady a unique power: she not only dominated the center of the composition, but also, like a divine being, commanded a unified view of the surroundings on the lofty building, hence echoing the political reality of the empress mother’s “overseeing the court” in the second century during Eastern Han dynasty

    Robust estimation of bacterial cell count from optical density

    Get PDF
    Optical density (OD) is widely used to estimate the density of cells in liquid culture, but cannot be compared between instruments without a standardized calibration protocol and is challenging to relate to actual cell count. We address this with an interlaboratory study comparing three simple, low-cost, and highly accessible OD calibration protocols across 244 laboratories, applied to eight strains of constitutive GFP-expressing E. coli. Based on our results, we recommend calibrating OD to estimated cell count using serial dilution of silica microspheres, which produces highly precise calibration (95.5% of residuals <1.2-fold), is easily assessed for quality control, also assesses instrument effective linear range, and can be combined with fluorescence calibration to obtain units of Molecules of Equivalent Fluorescein (MEFL) per cell, allowing direct comparison and data fusion with flow cytometry measurements: in our study, fluorescence per cell measurements showed only a 1.07-fold mean difference between plate reader and flow cytometry data

    System Reliability Evaluation of Prefabricated RC Hollow Slab Bridges Considering Hinge Joint Damage Based on Modified AHP

    No full text
    The prefabricated reinforced concrete (RC) hollow slab bridges, with the advantages of high quality, lower cost and shorter construction period, have been widely used for small-to-medium-span highway bridges in China. Because of environmental deterioration and traffic volume increases, the performance of the bridge system deteriorates gradually. Accurate bridge system evaluation can provide a reliable basis for maintenance and management. A bridge system is composed of multiple interrelated components, which makes the system reliability evaluation become a computationally intractable work. In this paper, an effective method was proposed to evaluate the system reliability of the prefabricated RC hollow slab bridge considering hinge joint damage based on the modified analytic hierarchy process (AHP). Considering the subjectivity of the traditional AHP method in constructing the judgment matrix, this paper proposed an objective construction method of the judgment matrix to modify the traditional AHP. The modified hinge plate method (MHPM) proposed by the previous research was utilized to analyze the effect of hinge joint damage on system reliability. In order to verify the applicability of the proposed system reliability evaluation method, a simply supported RC hollow slab bridge was selected as the case study and the system reliability indexes were compared with the traditional series and parallel methods. The results indicated that the traditional methods were either too conservative or too radical to objectively evaluate the actual system reliability level of the structure. In contrast, the proposed method in this paper was more suitable for evaluating the system reliability of such bridges, and more accurate in providing maintenance decision makers with a relatively reasonable bridge condition information

    Isolation, biological and whole genome characteristics of a Proteus mirabilis bacteriophage strain

    No full text
    Abstract Proteus mirabilis, a naturally resistant zoonotic bacterium belonging to the Enterobacteriaceae family, has exhibited an alarming increase in drug resistance. Consequently, there is an urgent need to explore alternative antimicrobial agents. Bacteriophages, viruses that selectively target bacteria, are abundant in the natural environment and have demonstrated potential as a promising alternative to antibiotics. In this study, we successfully isolated four strains of Proteus mirabilis phages from sewage obtained from a chicken farm in Sichuan, China. Subsequently, we characterized one of the most potent lytic phages, Q29, by examining its biological and genomic features. Comparative genomic analysis revealed the functional genes and phylogenetic evolution of Q29 phages. Our findings revealed that Proteus mirabilis bacteriophage Q29 possesses an icosahedral symmetrical head with a diameter of 95 nm and a tail length of 240 nm. Moreover, phage Q29 exhibited stability within a temperature range of 37 ℃ to 55 ℃ and under pH conditions ranging from 4 to 9. The optimal multiplicity of infection (MOI) for this phage was determined to be 0.001. Furthermore, the one-step growth curve results indicated an incubation period of approximately 15 min, an outbreak period of approximately 35 min, and an average cleavage quantity of approximately 60 plaque-forming units (PFU) per cell. The genome of phage Q29 was found to have a total length of 58,664 base pairs and encoded 335 open reading frames (ORFs) without carrying any antibiotic resistance genes. Additionally, genetic evolutionary analysis classified phage Q29 within the family Caudalidae and the genus Myotail. This study provides valuable research material for further development of Proteus mirabilis bacteriophage biologics as promising alternatives to antibiotics, particularly in light of the growing challenge of antibiotic resistance posed by this bacterium

    Bi<sub>2</sub>MoO<sub>6</sub> Embedded in 3D Porous N,O-Doped Carbon Nanosheets for Photocatalytic CO<sub>2</sub> Reduction

    No full text
    Artificial photosynthesis is promising to convert solar energy and CO2 into valuable chemicals, and to alleviate the problems of the greenhouse effect and the climate change crisis. Here, we fabricated a novel photocatalyst by directly growing Bi2MoO6 nanosheets on three-dimensional (3D) N,O-doped carbon (NO-C). Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) show that the designed photocatalyst ensured the close contact between Bi2MoO6 and NO-C, and reduced the stacking of the NO-C layers to provide abundant channels for the diffusion of CO2, while NO-C can allow for fast electron transfer. The charge transfer in this composite was determined to follow a step-scheme mechanism, which not only facilitates the separation of charge carriers but also retains a strong redox capability. Benefiting from this unique 3D structure and the synergistic effect, BMO/NO-C showed excellent performance in photocatalytic CO2 reductions. The yields of the best BMO/NO-C catalysts for CH4 and CO were 9.14 and 14.49 μmol g−1 h−1, respectively. This work provides new insights into constructing step-scheme photocatalytic systems with the 3D nanostructures
    corecore