185 research outputs found

    Alteration of T cell immunity by lentiviral transduction of human monocyte-derived dendritic cells

    Get PDF
    BACKGROUND: Dendritic cells (DCs) are professional antigen-presenting cells that play important roles during human immunodeficiency virus type 1 (HIV-1) infection. HIV-1 derived lentiviral vectors (LVs) transduce DCs at high efficiency but their effects on DC functions have not been carefully studied. Modification of DCs using LVs may lead to important applications in transplantation, treatment of cancer, autoimmune and infectious diseases. RESULTS: Using DCs prepared from multiple blood donors, we report that LV transduction of DCs resulted in altered DC phenotypes and functions. Lentiviral transduction of DCs resulted in down-regulation of cell surface molecules including CD1a, co-stimulatory molecules CD80, CD86, ICAM-1, and DC-SIGN. DCs transduced with LVs displayed a diminished capacity to polarize naive T cells to differentiate into Th1 effectors. This impaired Th1 response could be fully corrected by co-transduction of DCs with LVs encoding interleukin-12 (IL-12), interferon-gamma (IFN-γ), or small interfering RNA (siRNA) targeting IL-10. CONCLUSIONS: DCs transduced with LVs in vitro displayed diminished Th1 functions due to altered DC phenotypes. Our study addresses an important issue concerning lentiviral infection and modification of DC functions, and provides a rational approach using LVs for immunotherapy

    The Predicament and Methods for College Students Identifying With Core Valuesof Socialism From the Perspective of Social Interaction

    Get PDF
    College students’ identification with core socialism values affects the development of construction of spiritual civilization. In this paper, based on social interaction theory, we analyzed the relationship between it and identification with core socialism value. Based on these, we constructed model for method of identifying with the core socialism values from the respects of college interaction and external interaction, real interaction and virtual interaction

    Large-scale Kinetic Simulations of Colliding Plasmas within a Hohlraum of Indirect Drive Inertial Confinement Fusions

    Full text link
    The National Ignition Facility has recently achieved successful burning plasma and ignition using the inertial confinement fusion (ICF) approach. However, there are still many fundamental physics phenomena that are not well understood, including the kinetic processes in the hohlraum. Shan et al. [Phys. Rev. Lett, 120, 195001, 2018] utilized the energy spectra of neutrons to investigate the kinetic colliding plasma in a hohlraum of indirect drive ICF. However, due to the typical large spatial-temporal scales, this experiment could not be well simulated by using available codes at that time. Utilizing our advanced high-order implicit PIC code, LAPINS, we were able to successfully reproduce the experiment on a large scale of both spatial and temporal dimensions, in which the original computational scale was increased by approximately 7 to 8 orders of magnitude. When gold plasmas expand into deuterium plasmas, a kinetic shock is generated and propagates within deuterium plasmas. Simulations allow us to observe the entire progression of a strong shock wave, including its initial formation and steady propagation. Although both electrons and gold ions are collisional (on a small scale compared to the shock wave), deuterium ions seem to be collisionless. This is because a quasi-monoenergetic spectrum of deuterium ions can be generated by reflecting ions from the shock front, which then leads to the production of neutrons with unusual broadening due to beam-target nuclear reactions. This work displays an unprecedented kinetic analysis of an existing experiment, shedding light on the mechanisms behind shock wave formation. It also serves as a reference for benchmark simulations of upcoming new simulation codes and may be relevant for future research on mixtures and entropy increments at plasma interfaces

    Clinical features and familial mutations in the coexistence of Wilson's disease and Alport syndrome: A case report

    Get PDF
    BackgroundAlport syndrome (AS) and Wilson's disease (WD) are genetic diseases that could lead to kidney damage. Herein, we report the clinical features and gene variants in a patient with WD and X-linked AS.Case presentationThe proband was a 12-year-old boy diagnosed with AS coexisting with WD at the age of 11 years. The patient underwent a medical check-up when he was 4 years and 8 months. Laboratory tests revealed elevated liver enzymes, decreased serum ceruloplasmin, increased 24-h urinary copper excretion, and one variant in the ATP7B gene. Then, the patient was diagnosed with WD. After 2 months of treatment with D-penicillamine and zinc salt, his liver function had recovered to normal levels, but he presented with microscopic hematuria. The hematuria did not resolve after switching to dimercaptosuccinic acid from D-penicillamine. In addition, he presented with proteinuria 3 years later. A renal biopsy was performed more than 6 years after the patient was diagnosed with WD, and electron microscopy showed that the basement membrane thickness was uneven, layered, and focal torn. Copper staining was negative. A genetic analysis identified a hemizygous variant (c.1718G > A, p. Gly573Asp) in COL4A5 and a homozygous variant (c.2975C > T, p. Pro992leu) in ATP7B. The patient’s urine protein–creatinine ratio was less than 1.0 mg/mg after a 1 year of follow-up, after enalapril was administered for treating AS.ConclusionThis case highlights a lack of improvement in renal function after conventional treatment provides a possible indication for performing renal biopsy or genetic testing to determine the etiology in order to facilitate subsequent clinical management. Clinicians should prevent the occurrence of diagnostic inaccuracies caused by diagnostic anchoring because an accurate diagnosis is essential for achieving precise treatment and improved prognosis

    Carrier Trapping by Oxygen Impurities in Molybdenum Diselenide

    Full text link
    Understanding defect effect on carrier dynamics is essential for both fundamental physics and potential applications of transition metal dichalcogenides. Here, the phenomenon of oxygen impurities trapping photo-excited carriers has been studied with ultrafast pump-probe spectroscopy. Oxygen impurities are intentionally created in exfoliated multilayer MoSe2 with Ar+ plasma irradiation and air exposure. After plasma treatment, the signal of transient absorption first increases and then decreases, which is a signature of defect capturing carriers. With larger density of oxygen defects, the trapping effect becomes more prominent. The trapping defect densities are estimated from the transient absorption signal, and its increasing trend in the longer-irradiated sample agrees with the results from X-ray photoelectron spectroscopy. First principle calculations with density functional theory reveal that oxygen atoms occupying Mo vacancies create mid-gap defect states, which are responsible for the carrier trapping. Our findings shed light on the important role of oxygen defects as carrier trappers in transition metal dichalcogenides, and facilitates defect engineering in relevant material and device applications

    A review of high‐velocity impact on fiber‐reinforced textile composites: potential for aero engine applications

    Get PDF
    Considerable research has indicated that fiber-reinforced textile composites are significantly beneficial to the aerospace industry, especially aero engines, due to their high specific strength, specific stiffness, corrosion resistance, and fatigue resistance. However, damage caused by high-velocity impacts is a critical limitation factor in a wide range of applications. This paper presents an overview of the development, material characterizations, and applications of fiber-reinforced textile composites for aero engines. These textile composites are classified into four categories including two-dimensional (2D) woven composites, 2D braided composites, 3D woven composites, and 3D braided composites. The complex damage mechanisms of these composite materials due to high-velocity impacts are discussed in detail as well

    ATLAS Z Excess in Minimal Supersymmetric Standard Model

    Get PDF
    Recently the ATLAS collaboration reported a 3 sigma excess in the search for the events containing a dilepton pair from a Z boson and large missing transverse energy. Although the excess is not sufficiently significant yet, it is quite tempting to explain this excess by a well-motivated model beyond the standard model. In this paper we study a possibility of the minimal supersymmetric standard model (MSSM) for this excess. Especially, we focus on the MSSM spectrum where the sfermions are heavier than the gauginos and Higgsinos. We show that the excess can be explained by the reasonable MSSM mass spectrum.Comment: 13 pages, 7 figures; published versio

    Associations between air temperature and cardio-respiratory mortality in the urban area of Beijing, China: a time-series analysis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Associations between air temperature and mortality have been consistently observed in Europe and the United States; however, there is a lack of studies for Asian countries. Our study investigated the association between air temperature and cardio-respiratory mortality in the urban area of Beijing, China.</p> <p>Methods</p> <p>Death counts for cardiovascular and respiratory diseases for adult residents (≥15 years), meteorological parameters and concentrations of particulate air pollution were obtained from January 2003 to August 2005. The effects of two-day and 15-day average temperatures were estimated by Poisson regression models, controlling for time trend, relative humidity and other confounders if necessary. Effects were explored for warm (April to September) and cold periods (October to March) separately. The lagged effects of daily temperature were investigated by polynomial distributed lag (PDL) models.</p> <p>Results</p> <p>We observed a J-shaped exposure-response function only for 15-day average temperature and respiratory mortality in the warm period, with 21.3°C as the threshold temperature. All other exposure-response functions could be considered as linear. In the warm period, a 5°C increase of two-day average temperature was associated with a RR of 1.098 (95% confidence interval (95%CI): 1.057-1.140) for cardiovascular and 1.134 (95%CI: 1.050-1.224) for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.040 (95%CI: 0.990-1.093) for cardiovascular mortality. In the cold period, a 5°C increase of two-day average temperature was associated with a RR of 1.149 (95%CI: 1.078-1.224) for respiratory mortality; a 5°C decrease of 15-day average temperature was associated with a RR of 1.057 (95%CI: 1.022-1.094) for cardiovascular mortality. The effects remained robust after considering particles as additional confounders.</p> <p>Conclusions</p> <p>Both increases and decreases in air temperature are associated with an increased risk of cardiovascular mortality. The effects of heat were immediate while the ones of cold became predominant with longer time lags. Increases in air temperature are also associated with an immediate increased risk of respiratory mortality.</p
    corecore