220 research outputs found

    Divergent Changes in Plant Community Composition under 3-Decade Grazing Exclusion in Continental Steppe

    Get PDF
    An understanding of the factors controlling plant community composition will allow improved prediction of the responses of plant communities to natural and anthropogenic environmental change. Using monitoring data from 1980 to 2009, we quantified the changes in community composition in Leymus chinensis and Stipa grandis dominated grasslands in Inner Mongolia under long-term grazing-exclusion and free-grazing conditions, respectively. We demonstrated that the practice of long-term grazing exclusion has significant effects on the heterogeneity, the dominant species, and the community composition in the two grasslands. The community composition of L. chinensis and S. grandis grasslands exhibited directional changes with time under long-term grazing exclusion. Under free grazing, the L. chinensis community changed directionally with time, but the pattern of change was stochastic in the S. grandis community. We attributed the divergent responses to long-term grazing exclusion in the S. grandis and L. chinensis grasslands to litter accumulation and changes in the microenvironment after grazing exclusion, which collectively altered the growth and regeneration of the dominant species. The changes in the grazed grasslands were primarily determined by the selective feeding of sheep during long-term heavy grazing. Overall, the responses of the community composition of the Inner Mongolian grasslands to long-term grazing exclusion and heavy grazing were divergent, and depended primarily on the grassland type. Our findings provide new insights into the role of grazing in the maintenance of community structure and function and therefore have important implications for grassland management

    Electric-field Control of Magnetism with Emergent Topological Hall Effect in SrRuO3 through Proton Evolution

    Full text link
    Ionic substitution forms an essential pathway to manipulate the carrier density and crystalline symmetry of materials via ion-lattice-electron coupling, leading to a rich spectrum of electronic states in strongly correlated systems. Using the ferromagnetic metal SrRuO3 as a model system, we demonstrate an efficient and reversible control of both carrier density and crystalline symmetry through the ionic liquid gating induced protonation. The insertion of protons electron-dopes SrRuO3, leading to an exotic ferromagnetic to paramagnetic phase transition along with the increase of proton concentration. Intriguingly, we observe an emergent topological Hall effect at the boundary of the phase transition as the consequence of the newly-established Dzyaloshinskii-Moriya interaction owing to the breaking of inversion symmetry in protonated SrRuO3 with the proton compositional film-depth gradient. We envision that electric-field controlled protonation opens a novel strategy to design material functionalities

    Linking stoichiometric homeostasis with ecosystem structure, functioning, and stability

    Get PDF
    Ecosystem structure, functioning, and stability have been a focus of ecological and environmental sciences during the past two decades. The mechanisms underlying their relationship, however, are not well understood. Based on comprehensive studies in Inner Mongolia grassland, here we show that species-level stoichiometric homeostasis was consistently positively correlated with dominance and stability on both 2-year and 27-year temporal scales and across a 1200-km spatial transect. At the community level, stoichiometric homeostasis was also positively correlated with ecosystem function and stability in most cases. Thus, homeostatic species tend to have high and stable biomass; and ecosystems dominated by more homeostatic species have higher productivity and greater stability. By modulating organism responses to key environmental drivers, stoichiometric homeostasis appears to be a major mechanism responsible for the structure, functioning, and stability of grassland ecosystems

    Diurnal Temperature Variation and Plants Drive Latitudinal Patterns in Seasonal Dynamics of Soil Microbial Community

    Get PDF
    Seasonality, an exogenous driver, motivates the biological and ecological temporal dynamics of animal and plant communities. Underexplored microbial temporal endogenous dynamics hinders the prediction of microbial response to climate change. To elucidate temporal dynamics of microbial communities, temporal turnover rates, phylogenetic relatedness, and species interactions were integrated to compare those of a series of forest ecosystems along latitudinal gradients. The seasonal turnover rhythm of microbial communities, estimated by the slope (w value) of similarity-time decay relationship, was spatially structured across the latitudinal gradient, which may be caused by a mixture of both diurnal temperature variation and seasonal patterns of plants. Statistical analyses revealed that diurnal temperature variation instead of average temperature imposed a positive and considerable effect alone and also jointly with plants. Due to higher diurnal temperature variation with more climatic niches, microbial communities might evolutionarily adapt into more dispersed phylogenetic assembly based on the standardized effect size of MNTD metric, and ecologically form higher community resistance and resiliency with stronger network interactions among species. Archaea and the bacterial groups of Chloroflexi, Alphaproteobacteria, and Deltaproteobacteria were sensitive to diurnal temperature variation with greater turnover rates at higher latitudes, indicating that greater diurnal temperature fluctuation imposes stronger selective pressure on thermal specialists, because bacteria and archaea, single-celled organisms, have extreme short generation period compared to animal and plant. Our findings thus illustrate that the dynamics of microbial community and species interactions are crucial to assess ecosystem stability to climate variations in an increased climatic variability era

    Reversible manipulation of the magnetic state in SrRuO3 through electric-field controlled proton evolution

    Get PDF
    Ionic substitution forms an essential pathway to manipulate the structural phase, carrier density and crystalline symmetry of materials via ion-electron-lattice coupling, leading to a rich spectrum of electronic states in strongly correlated systems. Using the ferromagnetic metal SrRuO3 as a model system, we demonstrate an efficient and reversible control of both structural and electronic phase transformations through the electric-field controlled proton evolution with ionic liquid gating. The insertion of protons results in a large structural expansion and increased carrier density, leading to an exotic ferromagnetic to paramagnetic phase transition. Importantly, we reveal a novel protonated compound of HSrRuO3 with paramagnetic metallic as ground state. We observe a topological Hall effect at the boundary of the phase transition due to the proton concentration gradient across the film-depth. We envision that electric-field controlled protonation opens up a pathway to explore novel electronic states and material functionalities in protonated material systems

    Testing the Growth Rate Hypothesis in Vascular Plants with Above- and Below-Ground Biomass

    Get PDF
    The growth rate hypothesis (GRH) proposes that higher growth rate (the rate of change in biomass per unit biomass, μ) is associated with higher P concentration and lower C∶P and N∶P ratios. However, the applicability of the GRH to vascular plants is not well-studied and few studies have been done on belowground biomass. Here we showed that, for aboveground, belowground and total biomass of three study species, μ was positively correlated with N∶C under N limitation and positively correlated with P∶C under P limitation. However, the N∶P ratio was a unimodal function of μ, increasing for small values of μ, reaching a maximum, and then decreasing. The range of variations in μ was positively correlated with variation in C∶N∶P stoichiometry. Furthermore, μ and C∶N∶P ranges for aboveground biomass were negatively correlated with those for belowground. Our results confirm the well-known association of growth rate with tissue concentration of the limiting nutrient and provide empirical support for recent theoretical formulations
    • …
    corecore