5 research outputs found

    Comparison Between Stone Columns and Vertical Geodrains with Preloading Embankment Techniques

    Get PDF
    In the framework of “Radès-La Goulette“bridge project (Tunisia), this study focuses on the construction of embankments located in north Lake of Tunis. These embankments with averaged height of about 6 m are founded on highly compressible clayey sand and muddy sand layers. A soil improvement technique is then imposed, to overcome the lack of low bearing capacity and high pronounced settlements. Two solutions of soil improvement have been studied; the first one consists in vertical “Geodrains” drilled until 10 m depth associated with step by step construction of preloading embankment. The second technique is stone columns reinforcement up to 10 m depth. It is focused at estimation of bearing capacity and prediction of settlement of reinforced soil by handling the recent elaborated software programme “Columns”. The evolution of consolidation settlement of embankments as a function of time is also considered. The consolidation of improved soil is studied by using the “poroelastic” prediction model and the Barron’s theory. A comparison between the two soil improvement techniques from the technical and economical viewpoints is presented. Compared to the “Geodrains” technique, the reinforcement by stone columns including the execution of embankments approximately leads to a gain of eight months and slightly cost reduced

    Analyse numérique de la réponse des pieux sous sollicitations latérales

    Get PDF
    Résumé : Afin de contribuer dans la réponse latérale des pieux sous sollicitations latérales et notamment prendre en compte des plusieurs paramètres en relation avec les pieux (matériau, diamètre, rigidité, inclinaison) et le sol (nature, rigidité), des analyses numériques en différences finies 2D et 3D ont été réalisées en considérant des pieux chargés latéralement et ancrés dans des sols sableux, argileux et même sableux-argileux. Des modèles numériques simulés avec les codes en différences finies FLAC pour l’analyse 2D et FLAC[indice supérieur 3D] pour l’analyse 3D ont été inspirés des modèles de pieux réduits et en vraie grandeur, faisant l’objet de publications. Des enregistrements du déplacement latéral ou/et de la capacité latérale ou/et du moment fléchissant des pieux considérés ont été pris lors de ces essais. Ces modèles numériques ont été validés à travers diverses comparaisons entre les mesures, les calculs de FLAC et/ou FLAC3D et dans des cas les calculs d’autres méthodes utilisées dans la pratique. Une comparaison entre l’analyse 2D et l’analyse 3D de la réponse latérale d’un pieu rigide chargé latéralement dans un sol cohérent, a été réalisée dans le but de connaître les limites de l’analyse 2D et la possibilité de corréler ses résultats à ceux de l’analyse 3D. L’influence de la charge verticale sur la réponse latérale (capacité latérale et moment fléchissant maximal) d’un pieu en béton, chargé latéralement dans des sols sableux et argileux, a été étudiée avec une analyse numérique 3D. Il a été démontré que pour le cas des sols sableux, la charge verticale n’a pas un effet considérable sur la réponse latérale des pieux soumis à des charges latérales. Par contre, la charge verticale conduit à une diminution significative de la capacité latérale des pieux dans des sols argileux. Il est également constaté que l'influence des charges verticales sur la réponse latérale du pieu installé dans une argile surconsolidée avec une résistance au cisaillement non drainée proportionnelle à la profondeur et un OCR variant de 1,5 à 4,0 est très différent de celle correspondante à une résistance au cisaillement non drainée constante quelle que soit la valeur d’OCR. Des analyses 3D ont été, également, effectuées pour étudier la réponse latérale de pieux inclinés et chargés latéralement. La capacité latérale des pieux inclinés dans les sols sableux est considérablement augmentée avec l’augmentation de la valeur de l’inclinaison du pieu correspondante à la direction opposée à la direction de la charge latérale, et la densité du sable. Mais lorsque la direction de l’inclinaison du pieu et la même que celle correspondante à la charge latérale, cette capacité latérale est légèrement à modérément augmentée tout dépendamment de la valeur et le signe de l'angle ainsi que de la densité du sable. L’influence de l’angle d’inclinaison associé avec la charge verticale sur la capacité latérale de pieux inclinés est aussi très importante pour les sols sableux. Pour les sols argileux, l'influence de l'angle d’inclinaison sur la capacité latérale dépend seulement de l'angle d’inclinaison. En effet, la capacité latérale est modérément augmentée. Par contre, L'effet combiné de l’angle et la charge verticale est assez important. // Abstract : This thesis pertains to numerical analyses conducted primarily to evaluate the lateral response of piles and the contribution of several parameters related to piles (e.g., material, diameter, stiffness, inclination) and the soil (e.g., type, rigidity). Numerical finite differences analysis in 2D and 3D have been performed modelizing laterally loaded piles in sandy, clayey, and even sandy-clayey soils. Numerical models, simulated with finite difference codes FLAC for analysis in 2D and FLAC[superscript 3D] for 3D analysis, were inspired from experimental laboratory and full scale models available in literature. Measurements of lateral deflection and/or lateral capacity and/or bending moment of tested piles were recorded during these tests. These numerical models have been validated through comparison between the various measurements, predictions with FLAC and/or FLAC3D and for some cases the calculations with other methods used in practice. Comparison between 2D and 3D analyses of the response of laterally loaded rigid piles in cohesive soils, was performed in order to investigate the 2D analysis limitations and the possibility of correlating the 2D results with those of 3D analysis. A series of 3D finite differences analyses is also conducted to evaluate the influence of vertical loads on the lateral response of pile foundations. Numerical results have shown that the lateral resistance of the piles does not appear to vary considerably with the vertical load in sandy soil especially at loosest stat. However, vertical load leads to a significant decrease in lateral capacity of piles in homogeneous and inhomogeneous clay layers. It is also found that the influence of vertical loads on the lateral response of pile installed in over-consolidated clay with undrained strength proportional to depth and different OCR in the range of 1.5 to 4.0 is quite different from that with constant undrained strength regardless the adopted OCR value. The 3D finite difference analyses have been, also, carried out to investigate the lateral response of battered piles. The lateral capacity of the battered piles in sandy soils is considerably increased when the value of pile inclination corresponding to the opposite direction of the lateral load increases and when the sand density increases. But in the case of pile inclination corresponding to the same direction of the lateral load, the lateral capacity is slightly increased regardless to the adopted value of batter angle and the sand density. In clayey soil, it was found that the influence of the batter angle on the lateral capacity of piles depends only on the batter angle and not on the clay rigidity. For the case of pile inclination corresponding to the opposite direction of the lateral load, the lateral capacity is moderately increased and for the other case of inclination, the effects are not significant. The influence of both batter angle and vertical load on lateral capacity of battered pile in clayey soils is moderately pronounced

    Analyse numérique de la réponse des pieux sous sollicitations latérales

    No full text
    Résumé : Afin de contribuer dans la réponse latérale des pieux sous sollicitations latérales et notamment prendre en compte des plusieurs paramètres en relation avec les pieux (matériau, diamètre, rigidité, inclinaison) et le sol (nature, rigidité), des analyses numériques en différences finies 2D et 3D ont été réalisées en considérant des pieux chargés latéralement et ancrés dans des sols sableux, argileux et même sableux-argileux. Des modèles numériques simulés avec les codes en différences finies FLAC pour l’analyse 2D et FLAC[indice supérieur 3D] pour l’analyse 3D ont été inspirés des modèles de pieux réduits et en vraie grandeur, faisant l’objet de publications. Des enregistrements du déplacement latéral ou/et de la capacité latérale ou/et du moment fléchissant des pieux considérés ont été pris lors de ces essais. Ces modèles numériques ont été validés à travers diverses comparaisons entre les mesures, les calculs de FLAC et/ou FLAC3D et dans des cas les calculs d’autres méthodes utilisées dans la pratique. Une comparaison entre l’analyse 2D et l’analyse 3D de la réponse latérale d’un pieu rigide chargé latéralement dans un sol cohérent, a été réalisée dans le but de connaître les limites de l’analyse 2D et la possibilité de corréler ses résultats à ceux de l’analyse 3D. L’influence de la charge verticale sur la réponse latérale (capacité latérale et moment fléchissant maximal) d’un pieu en béton, chargé latéralement dans des sols sableux et argileux, a été étudiée avec une analyse numérique 3D. Il a été démontré que pour le cas des sols sableux, la charge verticale n’a pas un effet considérable sur la réponse latérale des pieux soumis à des charges latérales. Par contre, la charge verticale conduit à une diminution significative de la capacité latérale des pieux dans des sols argileux. Il est également constaté que l'influence des charges verticales sur la réponse latérale du pieu installé dans une argile surconsolidée avec une résistance au cisaillement non drainée proportionnelle à la profondeur et un OCR variant de 1,5 à 4,0 est très différent de celle correspondante à une résistance au cisaillement non drainée constante quelle que soit la valeur d’OCR. Des analyses 3D ont été, également, effectuées pour étudier la réponse latérale de pieux inclinés et chargés latéralement. La capacité latérale des pieux inclinés dans les sols sableux est considérablement augmentée avec l’augmentation de la valeur de l’inclinaison du pieu correspondante à la direction opposée à la direction de la charge latérale, et la densité du sable. Mais lorsque la direction de l’inclinaison du pieu et la même que celle correspondante à la charge latérale, cette capacité latérale est légèrement à modérément augmentée tout dépendamment de la valeur et le signe de l'angle ainsi que de la densité du sable. L’influence de l’angle d’inclinaison associé avec la charge verticale sur la capacité latérale de pieux inclinés est aussi très importante pour les sols sableux. Pour les sols argileux, l'influence de l'angle d’inclinaison sur la capacité latérale dépend seulement de l'angle d’inclinaison. En effet, la capacité latérale est modérément augmentée. Par contre, L'effet combiné de l’angle et la charge verticale est assez important. // Abstract : This thesis pertains to numerical analyses conducted primarily to evaluate the lateral response of piles and the contribution of several parameters related to piles (e.g., material, diameter, stiffness, inclination) and the soil (e.g., type, rigidity). Numerical finite differences analysis in 2D and 3D have been performed modelizing laterally loaded piles in sandy, clayey, and even sandy-clayey soils. Numerical models, simulated with finite difference codes FLAC for analysis in 2D and FLAC[superscript 3D] for 3D analysis, were inspired from experimental laboratory and full scale models available in literature. Measurements of lateral deflection and/or lateral capacity and/or bending moment of tested piles were recorded during these tests. These numerical models have been validated through comparison between the various measurements, predictions with FLAC and/or FLAC3D and for some cases the calculations with other methods used in practice. Comparison between 2D and 3D analyses of the response of laterally loaded rigid piles in cohesive soils, was performed in order to investigate the 2D analysis limitations and the possibility of correlating the 2D results with those of 3D analysis. A series of 3D finite differences analyses is also conducted to evaluate the influence of vertical loads on the lateral response of pile foundations. Numerical results have shown that the lateral resistance of the piles does not appear to vary considerably with the vertical load in sandy soil especially at loosest stat. However, vertical load leads to a significant decrease in lateral capacity of piles in homogeneous and inhomogeneous clay layers. It is also found that the influence of vertical loads on the lateral response of pile installed in over-consolidated clay with undrained strength proportional to depth and different OCR in the range of 1.5 to 4.0 is quite different from that with constant undrained strength regardless the adopted OCR value. The 3D finite difference analyses have been, also, carried out to investigate the lateral response of battered piles. The lateral capacity of the battered piles in sandy soils is considerably increased when the value of pile inclination corresponding to the opposite direction of the lateral load increases and when the sand density increases. But in the case of pile inclination corresponding to the same direction of the lateral load, the lateral capacity is slightly increased regardless to the adopted value of batter angle and the sand density. In clayey soil, it was found that the influence of the batter angle on the lateral capacity of piles depends only on the batter angle and not on the clay rigidity. For the case of pile inclination corresponding to the opposite direction of the lateral load, the lateral capacity is moderately increased and for the other case of inclination, the effects are not significant. The influence of both batter angle and vertical load on lateral capacity of battered pile in clayey soils is moderately pronounced

    Influence of vertical loads on lateral response of pile foundations in sands and clays

    No full text
    Although the load applied to pile foundations is usually a combination of vertical and lateral components, there have been few investigations on the behavior of piles subjected to combined loadings. Those few studies led to inconsistent results with regard to the effects of vertical loads on the lateral response of piles. A series of three-dimensional (3D) finite differences analyses is conducted to evaluate the influence of vertical loads on the lateral performance of pile foundations. Three idealized sandy and clayey soil profiles are considered: a homogeneous soil layer, a layer with modulus proportional to depth, and two-layered strata. The pile material is modeled as linearly elastic, while the soil is idealized using the Mohr–Coulomb constitutive model with a non-associated flow rule. In order to confirm the findings of this study, soils in some cases are further modeled using more sophisticated models (i.e. CYsoil model for sandy soils and modified Cam-Clay (MCC) model for clayey soils). Numerical results showed that the lateral resistance of the piles does not appear to vary considerably with the vertical load in sandy soil especially at the loosest state. However, the presence of a vertical load on a pile embedded in homogeneous or inhomogeneous clay is detrimental to its lateral capacity, and it is unconservative to design piles in clays assuming that there is no interaction between vertical and lateral loads. Moreover, the current results indicate that the effect of vertical loads on the lateral response of piles embedded in two-layered strata depends on the characteristics of soil not only surrounding the piles but also located beneath their tips
    corecore