2,290 research outputs found

    Unconventional oil and gas energy systems: An unidentified hotspot of antimicrobial resistance?

    Get PDF
    Biocides used in unconventional oil and gas (UOG) practices, such as hydraulic fracturing, control microbial growth. Unwanted microbial growth can cause gas souring, pipeline clogging, and microbial-induced corrosion of equipment and transportation pipes. However, optimizing biocide use has not been a priority. Moreover, biocide efficacy has been questioned because microbial surveys show an active microbial community in hydraulic fracturing produced and flowback water. Hydraulic fracturing produced and flowback water increases risks to surface aquifers and rivers/lakes near the UOG operations compared with conventional oil and gas operations. While some biocides and biocide degradation products have been highlighted as chemicals of concern because of their toxicity to humans and the environment, the selective antimicrobial pressure they cause has not been considered seriously. This perspective article aims to promote research to determine if antimicrobial pressure in these systems is cause for concern. UOG practices could potentially create antimicrobial resistance hotspots under-appreciated in the literature, practice, and regulation arena, hotspots that should not be ignored. The article is distinctive in discussing antimicrobial resistance risks associated with UOG biocides from

    Complete homochirality induced by the nonlinear autocatalysis and recycling

    Full text link
    A nonlinear autocatalysis of a chiral substance is shown to achieve homochirality in a closed system, if the back-reaction is included. Asymmetry in the concentration of two enantiomers or the enantiometric excess increases due to the nonlinear autocatalysis. Furthermore, when the back-reaction is taken into account, the reactant supplied by the decomposition of the enantiomers is recycled to produce more and more the dominant one, and eventually the homochirality is established.Comment: 4 pages, 2 figure

    The Importance of Static Correlation in the Band Structure of High Temperature Superconductors

    Full text link
    Recently we presented a new band structure for La(2-x)Sr(x)CuO(4) and other high temperature superconductors in which a second narrow band was seen to cross the primary band at the Fermi level. The existence of this second Fermi level band is in complete disagreement with the commonly accepted LDA band structure. Yet it provided a crucial piece of physics which led to an explanation for superconductivity and other unusual phenomena in these materials. In this work we present details as to the nature of the failure of conventional methods in deriving the band structure of the cuprates. In particular, we use a number of chemical analogues to describe the problem of static correlation in the band structure calculations and show how this can be corrected with the predictable outcome of a Fermi level band crossing.Comment: The Journal of Physical Chemistry, in press. References and figures updated. See www.firstprinciples.com for more information related to this wor

    Analyzing Transatlantic Network Traffic over Scientific Data Caches

    Full text link
    Large scientific collaborations often share huge volumes of data around the world. Consequently a significant amount of network bandwidth is needed for data replication and data access. Users in the same region may possibly share resources as well as data, especially when they are working on related topics with similar datasets. In this work, we study the network traffic patterns and resource utilization for scientific data caches connecting European networks to the US. We explore the efficiency of resource utilization, especially for network traffic which consists mostly of transatlantic data transfers, and the potential for having more caching node deployments. Our study shows that these data caches reduced network traffic volume by 97% during the study period. This demonstrates that such caching nodes are effective in reducing wide-area network traffic

    Abundant phosphorus expected for possible life in Enceladus’s ocean

    Get PDF
    Saturn’s moon Enceladus has a potentially habitable subsurface water ocean that contains canonical building blocks of life (organic and inorganic carbon, ammonia, possibly hydrogen sulfide) and chemical energy (disequilibria for methanogenesis). However, its habitability could be strongly affected by the unknown availability of phosphorus (P). Here, we perform thermodynamic and kinetic modeling that simulates P geochemistry based on recent insights into the geochemistry of the ocean–seafloor system on Enceladus. We find that aqueous P should predominantly exist as orthophosphate (e.g., HPO42−), and total dissolved inorganic P could reach 10−7 to 10−2 mol/kg H2O, generally increasing with lower pH and higher dissolved CO2, but also depending upon dissolved ammonia and silica. Levels are much higher than <10−10 mol/kg H2O from previous estimates and close to or higher than ∌10−6 mol/kg H2O in modern Earth seawater. The high P concentration is primarily ascribed to a high (bi)carbonate concentration, which decreases the concentrations of multivalent cations via carbonate mineral formation, allowing phosphate to accumulate. Kinetic modeling of phosphate mineral dissolution suggests that geologically rapid release of P from seafloor weathering of a chondritic rocky core could supply millimoles of total dissolved P per kilogram of H2O within 105 y, much less than the likely age of Enceladus’s ocean (108 to 109 y). These results provide further evidence of habitable ocean conditions and show that any oceanic life would not be inhibited by low P availability

    Colwellia psychrerythraea Strains from Distant Deep Sea Basins Show Adaptation to Local Conditions

    Get PDF
    Many studies have shown that microbes, which share nearly identical 16S rRNA genes, can have highly divergent genomes. Microbes from distinct parts of the ocean also exhibit biogeographic patterning. Here we seek to better understand how certain microbes from the same species have adapted for growth under local conditions. The phenotypic and genomic heterogeneity of three strains of Colwellia psychrerythraeawas investigated in order to understand adaptions to local environments. Colwellia are psychrophilic heterotrophic marine bacteria ubiquitous in cold marine ecosystems. We have recently isolated two Colwellia strains: ND2E from the Eastern Mediterranean and GAB14E from the Great Australian Bight. The 16S rRNA sequence of these two strains were greater than 98.2% identical to the well-characterized C. psychrerythraea 34H, which was isolated from arctic sediments. Salt tolerance, and carbon source utilization profiles for these strains were determined using Biolog Phenotype MicoArrays. These strains exhibited distinct salt tolerance, which was not associated with the salinity of sites of isolation. The carbon source utilization profiles were distinct with less than half of the tested carbon sources being metabolized by all three strains. Whole genome sequencing revealed that the genomes of these three strains were quite diverse with some genomes having up to 1600 strain-specific genes. Many genes involved in degrading strain-specific carbon sources were identified. There appears to be a link between carbon source utilization and location of isolation with distinctions observed between the Colwellia isolate recovered from sediment compared to water column isolates

    Electron Correlation and the c-axis Dispersion of Cu d_z^2: a New Band Structure for High Temperature Superconductors

    Full text link
    Previously we showed the major effect of electron correlation in the cuprate superconductors is to lower the energy of the Cu d_x^2-y^2/O p_sigma (x^2-y^2) band with respect to the Cu d_z^2/O' p_z (z^2) band. In our 2D Hubbard model for La_1.85Sr_0.15CuO_4 (LaSCO), the z^2 band is narrow and crosses the standard x^2-y^2 band just below the Fermi level. In this work, we introduce c-axis dispersion to the model and find the z^2 band to have considerable anisotropic 3D character. An additional hole-like surface opens up in the z^2 band at (0,0,2pi/c) which expands with doping. At sufficient doping levels, a symmetry allowed x^2-y^2/z^2 band crossing along the (0,0)-(pi,pi) direction of the Brillouin zone appears at the Fermi level. At this point, Cooper pairs between the two bands (e.g. (k uparrow x^2-y^2/k downarrow z^2)) can form, providing the basis for the Interband Pairing Theory of superconductivity in these materials.Comment: submitted to Phys. Rev. Lett. Related publications: Phys. Rev. B 58, 12303 (1998); Phys. Rev. B 58, 12323 (1998); cond-mat/9903088; cond-mat/990310
    • 

    corecore