34 research outputs found

    Age of the Ribeir?o da Folha ophiolite, Ara?ua? orogen : the U-Pb zircon (LA-ICPMS) dating of a plagiogranite.

    Get PDF
    O Or?geno Ara?ua?, de idade neoproteroz?ica, se estende da margem sudeste do Cr?ton do S?o Francisco ao Oceano Atl?ntico, entre os paralelos 15? e 21? S. O est?gio rifte da bacia precursora do Or?geno Ara?ua? ? balizado pela idade U-Pb SHRIMP de ca. 875 Ma dada por granitos anorog?nicos. A evolu??o orog?nica ? subdividida nos est?gios pr?-colisional (ca. 630-585 Ma), sin-colisional (ca. 585-560 Ma), tardi-colisional (ca. 560-530 Ma) e p?s-colisional (ca. 530-490 Ma). Remanescentes de rochas magm?ticas de assoalho oce?nico, localizados no setor central deste or?geno, t?m sido descritos na literatura geol?gica desde 1990. O mais completo destes registros oce?nicos ? o ofiolito de Ribeir?o da Folha, situado nos arredores da vila hom?nima, no munic?pio de Minas Novas, MG. O ofiolito de Ribeir?o da Folha ? uma associa??o litol?gica tectonicamente desmembrada, composta por fatias de rochas meta-ultram?ficas e metam?ficas que foram embutidas por empurr?es em pacotes da Forma??o Ribeir?o da Folha (unidade distal do Grupo Maca?bas). Esta forma??o, na ?rea enfocada, consiste de micaxistos e cianita-grafita xistos (pelitos pel?gicos), com intercala??es de metacherts sulfetados, diopsiditos sulfetados, corpos de sulfetos maci?os, forma??es ferr?feras bandadas dos tipos ?xido, sulfeto e silicato, e orto-anfibolitos finos (metabasaltos), metamorfisados nas zonas da cianita da f?cies anfibolito m?dio. Dados geotermobarom?tricos dos micaxistos peraluminosos revelaram condi??es metam?rficas em torno de 550? C a 5,5 kbar. As assinaturas litoqu?micas das rochas metam?ficas e meta-ultram?ficas revelam afinidade ofiol?tica e origem em assoalho oce?nico. Os dados isot?picos Sm-Nd destas rochas mostram valores positivos de epsilon Nd (+3 a +7), e as idades modelo e isocr?nica sugerem desenvolvimento de litosfera oce?nica durante o Neoproteroz?ico. Todas as tentativas anteriores de recupera??o de zirc?o a partir de volumosas amostras das rochas metam?ficas foram infrut?feras. Contudo, corpos leucocr?ticos semelhantes a plagiogranito foram reconhecidos poucos anos atr?s e se tornaram um dos principais alvos da tese de doutorado da primeira autora. Estes corpos ocorrem sob a forma de veios irregulares com dimens?es milim?tricas a centim?tricas (at? 50 cm), e s?o encaixados por orto-anfibolito bandado de granula??o m?dia a grossa (metadolerito a metagabro). Os corpos leucocr?ticos consistem de metaplagiogranito foliado, composto essencialmente por plagiocl?sio c?lcico com bordas alb?ticas, quartzo, hornblenda e epidoto, com titanita, sulfeto, apatita e zirc?o como os principais minerais acess?rios. Os cristais de zirc?o da amostra de plagiogranito s?o eu?dricos e muito l?mpidos, e mostram morfologia prism?tica elongada (3:1), sugerindo origem magm?tica. An?lises U-Pb por LA-ICPMS (Laser Ablation Inductively Coupled Mass Spectrometry) foram realizadas em dezoito cristais de zirc?o e mostram resultados concordantes, indicando idade de cristaliza??o magm?tica de 660 ? 29 Ma. Esta idade baliza a ?poca de gera??o de crosta oce?nica na bacia precursora do Or?geno Ara?ua?. O espalhamento de algumas das an?lises ao longo da curva conc?rdia sugere perda de Pb devido ao metamorfismo de f?cies anfibolito em ca. 580 Ma. A idade de ca. 660 Ma plagiogranito precede a maior idade U-Pb (ca. 630 Ma) de tonalitos deformados do arco magm?tico pr?-colisional, bem como a idade U-Pb (ca. 582 Ma) dos granitos sincolisionais mais antigos

    Irarsite-hollingworthite solid-solution series and other associated Ru-, Os-, Ir-, and Rh-bearing PGM's from the Shetland ophiolite complex

    No full text
    Pure end and intermediate members of the irarsite-hollingworthite solid-solution series occur in the Shetland ophiolite complex. Hollingworthite frequently rims irarsite. Their compositions are unusually Pt poor, compared with analyses of these minerals from elswhere, suggesting the existence of a Pt-poor environment during their formation. Ir-Sb-S and Rh-Sb-S have been identified as inclusions within irarsite. Ir-Sb-S and Rh-Sb-S together with Rh-Ni-Sb are thought to be new platinum-group minerals (PGM's) in ophiolite complexes. Two types of laurite are present. An Os-rich (up to 22% Os) variety is entirely enclosed by chromite, whereas an Os-free variety is located in the silicate matrix interstitial to the chromite. Laurites in the rims of chromite grains are Os-free but contain tiny inclusions of native osmium. It is suggested that either the availability of Os decreased during crystallisation of the laurites or that Os has been removed from laurites not totally enclosed by chromite. In a few cases laurite is surrounded by a ruthenian pentlandite containing up to 12% Ru

    Contribución al conocimiento de las Anfibolitas y Dunitas de Medellín (Complejo Ofiolítico de Aburrá)

    No full text
    EDICIÓN Edición 149 - Julio de 2006 AUTORES EURICO PEREIRA FRANKLIN ORTIZ HAZEL PRICHARD RESUMEN En el oriente y norte de Medellín, aflora un cuerpo alargado de dunita metamórfica con dirección noroeste y un área aproximada de 60 km2, en contacto tectónico con ortoanfibolitas. Estos dos cuerpos hacen parte de un fragmento de corteza oceánica desmembrada, formando parte integral del Complejo Ofiolítico de Aburrá (Correa y Martens, 2000), hecho también admitido anteriormente por Toussaint (1996) al considerar a las anfibolitas de Medellín como ofiolitas incluidas dentro del Complejo Arquía. Aunque hasta ahora no se han identificado sectores intermedios de la corteza oceánica tales como son los ?flaser?-gabros y el complejo de diques, las anfibolitas muestran una huella química de un MORB-E enriquecido en los elementos litófilos incompatibles (LIL) y, en casos esporádicos, de un MORB T de basaltos transicionales oceánicos. El contacto tectónico entre las dunitas y las anfibolitas exhibe una variedad de situaciones de retromorfismo y de alteración hidrotermal. La dunita es uniforme en composición, altamente magnesiana y contiene varios cuerpos de cromita podiforme. A resaltar, desde el punto de vista metalogénico es la determinación, por primera vez, de contenidos anómalos de elementos del grupo del platino (EGP) en esta dunita. Los EGP más comunes son antimoniuros, arseniuros y aleaciones. Específicamente los más comunes incluyen antimoniuros de Pd, algunas veces con Hg-Cu-Au, esperrilita (PtAs2) y PtCu; otros son PtCuS, una aleación Pt-Ni-Fe, un arseniuro de Pd-Pt-Hg, un PdCu6SbAs y un sulf-arseniuro Os-Ir-Ni. Es notoria en ella la serpentinización que se hace más intensa hacia las zonas donde se concentró el movimiento tectónico. Es común encontrar estructuras de estratificación primaria, marcadas por el alineamiento de minerales, a lo largo de la lineación de estiramiento y microplegamiento que ha sido interpretado como indicativo de que dicha unidad estuvo sometida a flujo deformacional bajo condiciones de metamorfismo de grado medio registrado en las dunitas y en las anfibolitas. La intensidad de la deformación y metamorfismo es muy difícil de explicar por la acreción del arco primitivo andino, contemporáneo de la abertura del Atlántico, no Jurásico, como reconocen algunos autores. Las metabasitas pertenecen a una secuencia metamorfizada regionalmente en facies anfibolita con granate y exhiben foliación metamórfica doblada y cizallada. Lineaciones de estiramiento y criterios cinemáticos de deformación indican consistentemente que la dirección del transporte de la ofiolita seguiría el acimut N 35°- 60°E y el sentido de transporte del techo hacia el NE, esto es, sobre un borde continental de afinidad Gondwánica, pegado al borde del cratón Amazónico. Tratándose de la interfase corteza - manto oceánico se postula que las dunitas tuvieron un emplazamiento tectónico por obducción sobre las ortoanfibolitas durante un episodio tectono-metamórfico, probablemente en el Paleozoico superior (ciclo orogénico Apalachiano o Varisco

    Minor Phases as Carriers of Trace Elements in Non-Modal Crystal-Liquid Separation Processes II: Illustrations and Bearing on Behaviour of REE, U, Th and the PGE in Igneous Processes

    No full text
    Minor phases which strongly concentrate selected trace elements, termed here ‘carrier-phases’, release relatively large amounts of those elements to the liquid phase when they are eliminated during partial melting and glean relatively large amounts of those elements when they first appear during progressive crystallization. It is characteristic of such relationships that concentrations of the selected trace elements in the bulk residues of partial melting will rise to a peak somewhat before the last of the carrier-phase is eliminated during progressive melting. In the liquids produced during equilibrium partial melting a corresponding peak in the concentration of the trace element occurs at the point where the carrier-phase is eliminated; the corresponding peak in trace element concentration in the liquids produced by accumulated perfect fractional melting is found somewhat above that point. These peaks become more sharply accentuated as the distribution coefficient of the trace element into the carrier-phase increases. The highest trace element concentration in a partial melt liquid product is found in the small drop of liquid produced during perfect fractional melting at the point where the carrier-phase is eliminated. Still higher concentrations may be found in the first cumulates containing the carrier-phase which precipitate during perfect fractional crystallization but the corresponding liquids do not contain exceptionally high concentrations. Under favourable conditions a large proportion of the available mass of a trace element in a magmatic system may be transferred from the solid to the liquid phases or vice versa with only a small change in the mass fraction of liquid in and energy content of the system. Within that range, separation of otherwise very similarly behaved trace elements becomes possible. Further complexities arise and the opportunities for separation increase when two carrier-phases compete with differing success for the same group of trace elements

    Minor Phases as Carriers of Trace Elements in Non-Modal Crystal-Liquid Separation Processes I: Basic Relationships

    No full text
    Some trace elements have the property that, although they are incompatible with most mineral phases in magmatic systems, they are strongly concentrated in certain minor mineral phases. These minor phases, termed here ‘carrier-phases’, and their associated trace elements include platinum group elements in base metal sulphide and chromite; chromium and vanadium in magnetite; uranium group metals in zircon and monazite; and rare earth elements in monazite and xenotime. Carrier-phases may form only a small fraction of a source rock undergoing partial melting and tend to be eliminated from the residue at an intermediate point in the partial melting history; conversely, those same minor carrier-phases tend to precipitate late during fractional crystallization of a liquid produced in the above manner, but may constitute a high proportion of the cumulate then forming. This paper explores the phase equilibria aspects of such processes in a simple system, outlining a nomenclature which is then used in a mathematical treatment applicable to non-modal melting and crystallization processes involving several crystal species. The treatment at this stage assumes constant individual crystal–liquid distribution coefficients. Equations are developed, which are applied in a companion paper to illustrate the behaviour that can be anticipated when carrier-phases play a significant role in trace element location during melting and crystallization

    The mineralogy, geochemistry and genesis of the alluvial platinum-group minerals of the Freetown Layered Complex, Sierra Leone.

    No full text
    ABSTRACTHeavy mineral concentrates from rivers and river terraces near York, Freetown Peninsula, Sierra Leone have been examined for their platinum-group mineral (PGM) content. The alluvial PGM are 0.1 to 1.5 mm in size and include Cu-bearing isoferroplatinum (Pt3Fe) and disordered Pt3–xFe (x≤ 0.38), tulameenite (Pt2FeCu), hongshiite (PtCu), cooperite–vysotskite (PtS–PdS), laurite (RuS2), erlichmanite (OsS2), Os-Ir alloy, Os-Ru alloy and native copper.Are the alluvial nuggets primary or a neoformation? Comparison of the PGM mineralogy of fresh rocks, weathered rocks and the saprolite, with the alluvial suite shows strongly contrasting features highlighted by the mineral assemblage. Cooperite in the fresh rocks is rare in the alluvium whilst Pt-Fe alloys become more abundant. Oxidized PGM are a feature only of the weathering process and disordering of the Pt-Fe alloys develops during weathering. Palladium is much less abundant in the alluvial suite than in the primary minerals whereas Cu, present as Cu-sulfides in the fresh rocks, occurs in the alluvium as a minor component of the Pt-Fe alloys and as hongshiite alteration to the Pt-Fe alloys. The size difference is striking; the primary mineralogy is micrometre-sized whereas the alluvial PGM are three orders of magnitude larger. Delicate PGM with alteration textures are seen only in the weathered rocks whilst delicate dendritic PGM are reported only from the alluvial suite. An organic coating to the alluvial PGM may be indicative of an organic or bacterial involvement. Some alluvial PGM occur in a drainage basin devoid of outcrops of PGE-bearing horizons.Together these contrasting features of the primary and placer PGM support the proposal that the Freetown nuggets developed as a result of breakdown of the primary PGM during weathering, movement of the PGE in solution, and growth of new PGM in placers with a different mineral assemblage, mineralogy and mineral chemistry.</jats:p

    The distribution of platinum group elements (PGE) and other chalcophile elements among sulfides from the Creighton Ni–Cu–PGE sulfide deposit, Sudbury, Canada, and the origin of palladium in pentlandite

    No full text
    Concentrations of platinum group elements (PGE), Ag, As, Au, Bi, Cd, Co, Mo, Pb, Re, Sb, Se, Sn,Te, and Zn, have been determined in base metal sulfide(BMS) minerals from the western branch (402 Trough orebodies) of the Creighton Ni–Cu–PGE sulfide deposit,Sudbury, Canada. The sulfide assemblage is dominated by pyrrhotite, with minor pentlandite, chalcopyrite, and pyrite, and they represent monosulfide solid solution (MSS)cumulates. The aim of this study was to establish the distribution of the PGE among the BMS and platinum group minerals (PGM) in order to understand better the petrogenesis of the deposit. Mass balance calculations show that the BMS host all of the Co and Se, a significant proportion (40–90%) of Os, Pd, Ru, Cd, Sn, and Zn, but very little (<35%) of the Ag, Au, Bi, Ir, Mo, Pb, Pt, Rh, Re, Sb, and Te. Osmium and Ru are concentrated in equal proportions in pyrrhotite, pentlandite, and pyrite. Cobalt and Pd (?1 ppm) are concentrated in pentlandite. Silver, Cd, Sn, Zn, and in rare cases Au and Te, are concentrated in chalcopyrite. Selenium is present in equal proportions in all three BMS. Iridium, Rh, and Pt are present in euhedrally zoned PGE sulfarsenides, which comprise irarsite (IrAsS), hollingworthite (RhAsS), PGE-Ni-rich cobaltite (CoAsS), and subordinate sperrylite (PtAs2), all of which are hosted predominantly in pyrrhotite and pentlandite. Silver, Au, Bi, Mo, Pb, Re, Sb, and Te are found predominantly in discrete accessory minerals such as electrum (Au–Ag alloy), hessite (Ag2Te), michenerite (PdBiTe), and rhenium sulfides. The enrichment of Os, Ru, Ni, and Co in pyrrhotite, pentlandite, and pyrite and Ag, Au, Cd, Sn, Te, and Zn in chalcopyrite can be explained by fractional crystallization of MSS from a sulfide liquid followed by exsolution of the sulfides. The early crystallization of the PGE sulfarsenides from the sulfide melt depleted the MSS in Ir and Rh. The bulk of Pd in pentlandite cannot be explained by sulfide fractionation alone because Pd should have partitioned into the residual Cu-rich liquid and be in chalcopyrite or in PGM around chalcopyrite. The variation of Pd among different pentlandite textures provides evidence that Pd diffuses into pentlandite during its exsolution from MSS. The source of Pd was from the small quantity of Pd that partitioned originally into the MSS and a larger quantity of Pd in the nearby Cu-rich portion (intermediate solid solution and/or Pd-bearing PGM). The source of Pd became depleted during the diffusion process, thus later-forming pentlandite(rims of coarse-granular, veinlets, and exsolution flames) contains less Pd than early-forming pentlandite (cores of coarse-granular)
    corecore