21 research outputs found

    Long COVID and the Neuroendocrinology of Microbial Translocation Outside the GI Tract: Some Treatment Strategies

    Get PDF
    Similar to previous pandemics, COVID-19 has been succeeded by well-documented postinfectious sequelae, including chronic fatigue, cough, shortness of breath, myalgia, and concentration difficulties, which may last 5 to 12 weeks or longer after the acute phase of illness. Both the psychological stress of SARS-CoV-2 infection and being diagnosed with COVID-19 can upregulate cortisol, a stress hormone that disrupts the efferocytosis effectors, macrophages, and natural killer cells, leading to the excessive accumulation of senescent cells and disruption of biological barriers. This has been well-established in cancer patients who often experience unrelenting fatigue as well as gut and blood– brain barrier dysfunction upon treatment with senescence-inducing radiation or chemotherapy. In our previous research from 2020 and 2021, we linked COVID-19 to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) via angiotensin II upregulation, premature endothelial senescence, intestinal barrier dysfunction, and microbial translocation from the gastrointestinal tract into the systemic circulation. In 2021 and 2022, these hypotheses were validated and SARS-CoV-2-induced cellular senescence as well as microbial translocation were documented in both acute SARS-CoV-2 infection, long COVID, and ME/CFS, connecting intestinal barrier dysfunction to disabling fatigue and specific infectious events. The purpose of this narrative review is to summarize what is currently known about host immune responses to translocated gut microbes and how these responses relate to fatiguing illnesses, including long COVID. To accomplish this goal, we examine the role of intestinal and blood–brain barriers in long COVID and other illnesses typified by chronic fatigue, with a special emphasis on commensal microbes functioning as viral reservoirs. Furthermore, we discuss the role of SARS-CoV-2/Mycoplasma coinfection in dysfunctional efferocytosis, emphasizing some potential novel treatment strategies, including the use of senotherapeutic drugs, HMGB1 inhibitors, Toll-like receptor 4 (TLR4) blockers, and membrane lipid replacement

    Multifaceted highly targeted sequential multidrug treatment of early ambulatory high-risk SARS-CoV-2 infection (COVID-19)

    Get PDF
    The SARS-CoV-2 virus spreading across the world has led to surges of COVID-19 illness, hospitalizations, and death. The complex and multifaceted pathophysiology of life-threatening COVID-19 illness including viral mediated organ damage, cytokine storm, and thrombosis warrants early interventions to address all components of the devastating illness. In countries where therapeutic nihilism is prevalent, patients endure escalating symptoms and without early treatment can succumb to delayed in-hospital care and death. Prompt early initiation of sequenced multidrug therapy (SMDT) is a widely and currently available solution to stem the tide of hospitalizations and death. A multipronged therapeutic approach includes 1) adjuvant nutraceuticals, 2) combination intracellular anti-infective therapy, 3) inhaled/oral corticosteroids, 4) antiplatelet agents/anticoagulants, 5) supportive care including supplemental oxygen, monitoring, and telemedicine. Randomized trials of individual, novel oral therapies have not delivered tools for physicians to combat the pandemic in practice. No single therapeutic option thus far has been entirely effective and therefore a combination is required at this time. An urgent immediate pivot from single drug to SMDT regimens should be employed as a critical strategy to deal with the large numbers of acute COVID-19 patients with the aim of reducing the intensity and duration of symptoms and avoiding hospitalization and death

    Microbiome-Based Hypothesis on Ivermectin’s Mechanism in COVID-19: Ivermectin Feeds Bifidobacteria to Boost Immunity

    Get PDF
    Ivermectin is an anti-parasitic agent that has gained attention as a potential COVID-19 therapeutic. It is a compound of the type Avermectin, which is a fermented by-product of Streptomyces avermitilis. Bifidobacterium is a member of the same phylum as Streptomyces spp., suggesting it may have a symbiotic relation with Streptomyces. Decreased Bifidobacterium levels are observed in COVID-19 susceptibility states, including old age, autoimmune disorder, and obesity. We hypothesize that Ivermectin, as a by-product of Streptomyces fermentation, is capable of feeding Bifidobacterium, thereby possibly preventing against COVID-19 susceptibilities. Moreover, Bifidobacterium may be capable of boosting natural immunity, offering more direct COVID-19 protection. These data concord with our study, as well as others, that show Ivermectin protects against COVID-19

    Shotgun Metagenomic Sequencing Identifies Dysbiosis in Triplet Sibling with Gastrointestinal Symptoms and ASD

    No full text
    The gut microbiome profile of a child with autism spectrum disorder (ASD) and co-occurring gastrointestinal (GI) symptoms was compared to that of her healthy triplet siblings to determine if she exhibited intestinal dysbiosis. Shotgun metagenomic sequencing was performed in individual fecal samples, and relative microbial abundance and diversity was determined. Microbial diversity was lower in sibling #3, coupled with a higher Bacteroidetes/Firmicutes ratio, a lower relative abundance of Actinobacteria, and an increased relative abundance of Proteobacteria. Our findings are suggestive of gut dysbiosis in a child with ASD and co-occurring GI symptoms, compared to her two healthy triplet siblings

    Na/Ca exchange in the atrium: Role in sinoatrial node pacemaking and excitation-contraction coupling

    No full text
    International audienceNa/Ca exchange is the dominant calcium (Ca) efflux mechanism in cardiac myocytes. Although our knowledge of exchanger function (NCX1 in the heart) was originally established using biochemical and electrophysiological tools such as cardiac sarcolemmal vesicles and the giant patch technique [1-4], many advances in our understanding of the physiological/pathophysiological roles of NCX1 in the heart have been obtained using a suite of genetically modified mice. Early mouse studies focused on modification of expression levels of NCX1 in the ventricles, with transgenic overexpressors, global NCX1 knockout (KO) mice (which were embryonic lethal if homozygous), and finally ventricular-specific NCX1 KO [5-12]. We found, to our surprise, that ventricular cardiomyocytes lacking NCX1 can survive and function by engaging a clever set of adaptations to minimize Ca entry, while maintaining contractile function through an increase in excitation-contraction (EC) coupling gain [5,6,13]. Having studied ventricular NCX1 ablation in detail, we more recently focused on elucidating the role of NCX1 in the atria through altering NCX1 expression. Using a novel atrial-specific NCX1 KO mouse, we found unexpected changes in atrial cell morphology and calcium handling, together with dramatic alterations in the function of sinoatrial node (SAN) pacemaker activity. In this review, we will discuss these findings and their implications for cardiac disease

    Acute Genetic Ablation of Cardiac Sodium/Calcium Exchange in Adult Mice: Implications for Cardiomyocyte Calcium Regulation, Cardioprotection, and Arrhythmia.

    No full text
    Background Sodium-calcium (Ca2+) exchanger isoform 1 (NCX1) is the dominant Ca2+ efflux mechanism in cardiomyocytes and is critical to maintaining Ca2+ homeostasis during excitation-contraction coupling. NCX1 activity has been implicated in the pathogenesis of cardiovascular diseases, but a lack of specific NCX1 blockers complicates experimental interpretation. Our aim was to develop a tamoxifen-inducible NCX1 knockout (KO) mouse to investigate compensatory adaptations of acute ablation of NCX1 on excitation-contraction coupling and intracellular Ca2+ regulation, and to examine whether acute KO of NCX1 confers resistance to triggered arrhythmia and ischemia/reperfusion injury. Methods and Results We used the α-myosin heavy chain promoter (Myh6)-MerCreMer promoter to create a tamoxifen-inducible cardiac-specific NCX1 KO mouse. Within 1 week of tamoxifen injection, NCX1 protein expression and current were dramatically reduced. Diastolic Ca2+ increased despite adaptive reductions in Ca2+ current and action potential duration and compensatory increases in excitation-contraction coupling gain, sarcoplasmic reticulum Ca2+ ATPase 2 and plasma membrane Ca2+ ATPase. As these adaptations progressed over 4 weeks, diastolic Ca2+ normalized and SR Ca2+ load increased. Left ventricular function remained normal, but mild fibrosis and hypertrophy developed. Transcriptomics revealed modification of cardiovascular-related gene networks including cell growth and fibrosis. NCX1 KO reduced spontaneous action potentials triggered by delayed afterdepolarizations and reduced scar size in response to ischemia/reperfusion. Conclusions Tamoxifen-inducible NCX1 KO mice adapt to acute genetic ablation of NCX1 by reducing Ca2+ influx, increasing alternative Ca2+ efflux pathways, and increasing excitation-contraction coupling gain to maintain contractility at the cost of mild Ca2+-activated hypertrophy and fibrosis and decreased survival. Nevertheless, KO myocytes are protected against spontaneous action potentials and ischemia/reperfusion injury

    Exploratory Evaluation of Bezlotoxumab on Outcomes Associated With Clostridioides difficile Infection in MODIFY I/II Participants With Cancer

    No full text
    Background. The incidence of Clostridioides dtfficile infection (CDI) is reportedly higher and the cure rate lower in individuals with cancer vs those without cancer. An exploratory post hoc analysis of the MODIFY I/II trials (NCT01241552/NCT01513239) investigated how bezlotoxumab affected the rate of CDI-related outcomes in participants with cancer. Methods. Participants received a single infusion of bezlotoxumab (10 mg/kg) or placebo during anti-CDI antibacterial treatment. A post hoc analysis of CDI-related outcomes was conducted in subgroups of MODIFY I/II participants with and without cancer. Results. Of 1554 participants in the modified intent-to-treat (mITT) population, 382 (24.6%) were diagnosed with cancer (bezlotoxumab 190, placebo 192). Of participants without cancer, 591 and 581 received bezlotoxumab and placebo, respectively. In the placebo group, initial clinical cure (ICC) was achieved by fewer cancer participants vs participants without cancer (71.9% vs 83.1%; absolute difference, -11.3%; 95% CI, -18.6% to -4.5%); however, CDI recurrence (rCDI) rates were similar in cancer (30.4%) and noncancer (34.0%) participants. In participants with cancer, bezlotoxumab treatment had no effect on ICC rate compared with placebo (76.8% vs 71.9%), but resulted in a statistically significant reduction in rCDI vs placebo (17.8% vs 30.4%; absolute difference, -12.6%; 95% CI, -22.5% to -2.7%). Conclusions. In this post hoc analysis of participants with cancer enrolled in MODIFY I/II, the rate of rCDI in bezlotoxumabtreated participants was lower than in placebo-treated participants. Additional studies are needed to confirm these results

    Long COVID and the Neuroendocrinology of Microbial Translocation Outside the GI Tract: Some Treatment Strategies

    No full text
    Similar to previous pandemics, COVID-19 has been succeeded by well-documented post-infectious sequelae, including chronic fatigue, cough, shortness of breath, myalgia, and concentration difficulties, which may last 5 to 12 weeks or longer after the acute phase of illness. Both the psychological stress of SARS-CoV-2 infection and being diagnosed with COVID-19 can upregulate cortisol, a stress hormone that disrupts the efferocytosis effectors, macrophages, and natural killer cells, leading to the excessive accumulation of senescent cells and disruption of biological barriers. This has been well-established in cancer patients who often experience unrelenting fatigue as well as gut and blood–brain barrier dysfunction upon treatment with senescence-inducing radiation or chemotherapy. In our previous research from 2020 and 2021, we linked COVID-19 to myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) via angiotensin II upregulation, premature endothelial senescence, intestinal barrier dysfunction, and microbial translocation from the gastrointestinal tract into the systemic circulation. In 2021 and 2022, these hypotheses were validated and SARS-CoV-2-induced cellular senescence as well as microbial translocation were documented in both acute SARS-CoV-2 infection, long COVID, and ME/CFS, connecting intestinal barrier dysfunction to disabling fatigue and specific infectious events. The purpose of this narrative review is to summarize what is currently known about host immune responses to translocated gut microbes and how these responses relate to fatiguing illnesses, including long COVID. To accomplish this goal, we examine the role of intestinal and blood–brain barriers in long COVID and other illnesses typified by chronic fatigue, with a special emphasis on commensal microbes functioning as viral reservoirs. Furthermore, we discuss the role of SARS-CoV-2/Mycoplasma coinfection in dysfunctional efferocytosis, emphasizing some potential novel treatment strategies, including the use of senotherapeutic drugs, HMGB1 inhibitors, Toll-like receptor 4 (TLR4) blockers, and membrane lipid replacement
    corecore