10,820 research outputs found

    Gravitational waves from quasi-spherical black holes

    Full text link
    A quasi-spherical approximation scheme, intended to apply to coalescing black holes, allows the waveforms of gravitational radiation to be computed by integrating ordinary differential equations.Comment: 4 revtex pages, 2 eps figure

    A Simple Non-equilibrium Feedback Model for Galaxy-Scale Star Formation: Delayed Feedback and SFR Scatter

    Get PDF
    We explore a class of simple non-equilibrium star formation models within the framework of a feedback-regulated model of the ISM, applicable to kiloparsec-scale resolved star formation relations (e.g. Kennicutt-Schmidt). Combining a Toomre-Q-dependent local star formation efficiency per free-fall time with a model for delayed feedback, we are able to match the normalization and scatter of resolved star formation scaling relations. In particular, this simple model suggests that large (∌\simdex) variations in star formation rates (SFRs) on kiloparsec scales may be due to the fact that supernova feedback is not instantaneous following star formation. The scatter in SFRs at constant gas surface density in a galaxy then depends on the properties of feedback and when we observe its star-forming regions at various points throughout their collapse/star formation "cycles". This has the following important observational consequences: (1) the scatter and normalization of the Kennicutt-Schmidt relation are relatively insensitive to the local (small-scale) star formation efficiency, (2) but gas depletion times and velocity dispersions are; (3) the scatter in and normalization of the Kennicutt-Schmidt relation is a sensitive probe of the feedback timescale and strength; (4) even in a model where Q~gas\tilde Q_{\rm gas} deterministically dictates star formation locally, time evolution, variation in local conditions (e.g., gas fractions and dynamical times), and variations between galaxies can destroy much of the observable correlation between SFR and Q~gas\tilde Q_{\rm gas} in resolved galaxy surveys. Additionally, this model exhibits large scatter in SFRs at low gas surface densities, in agreement with observations of flat outer HI disk velocity dispersion profiles.Comment: 15 pages, 6 figures, accepted by MNRAS (04/25/2019

    Why are active galactic nuclei and host galaxies misaligned?

    Get PDF
    It is well established observationally that the characteristic angular momentum axis on small scales around active galactic nuclei (AGN), traced by radio jets and the putative torus, is not well correlated with the large-scale angular momentum axis of the host galaxy. In this paper, we show that such misalignments arise naturally in high-resolution simulations in which we follow angular momentum transport and inflows from galaxy to sub-pc scales near AGN, triggered either during galaxy mergers or by instabilities in isolated discs. Sudden misalignments can sometimes be caused by single massive clumps falling into the centre slightly off-axis, but more generally, they arise even when the gas inflows are smooth and trace only global gravitational instabilities. When several nested, self-gravitating modes are present, the inner ones can precess and tumble in the potential of the outer modes. Resonant angular momentum exchange can flip or re-align the spin of an inner mode on a short time-scale, even without the presence of massive clumps. We therefore do not expect that AGN and their host galaxies will be preferentially aligned, nor should the relative alignment be an indicator of the AGN fuelling mechanism. We discuss implications of this conclusion for AGN feedback and black hole (BH) spin evolution. The misalignments may mean that even BHs accreting from smooth large-scale discs will not be spun up to maximal rotation and so have more modest radiative efficiencies and inefficient jet formation. Even more random orientations/lower spins are possible if there is further unresolved clumpiness in the gas, and more ordered accretion may occur if the inflow is slower and not self-gravitating

    The origins of active galactic nuclei obscuration: the ‘torus’ as a dynamical, unstable driver of accretion

    Get PDF
    Recent multiscale simulations have made it possible to follow gas inflows responsible for high-Eddington ratio accretion on to massive black holes (BHs) from galactic scales to the BH accretion disc. When sufficient gas is driven towards a BH, gravitational instabilities generically form lopsided, eccentric discs that propagate inwards from larger radii. The lopsided stellar disc exerts a strong torque on the gas, driving inflows that fuel the growth of the BH. Here, we investigate the possibility that the same disc, in its gas-rich phase, is the putative ‘torus’ invoked to explain obscured active galactic nuclei (AGN) and the cosmic X-ray background. The disc is generically thick and has characteristic ∌1–10 pc sizes and masses resembling those required of the torus. Interestingly, the scale heights and obscured fractions of the predicted torii are substantial even in the absence of strong stellar feedback providing the vertical support. Rather, they can be maintained by strong bending modes and warps/twists excited by the inflow-generating instabilities. A number of other observed properties commonly attributed to ‘feedback’ processes may in fact be explained entirely by dynamical, gravitational effects: the lack of alignment between torus and host galaxy, correlations between local star formation rate (SFR) and turbulent gas velocities and the dependence of obscured fractions on AGN luminosity or SFR. We compare the predicted torus properties with observations of gas surface density profiles, kinematics, scale heights and SFR densities in AGN, and find that they are consistent in all cases. We argue that it is not possible to reproduce these observations and the observed column density distribution without a clumpy gas distribution, but allowing for simple clumping on small scales the predicted column density distribution is in good agreement with observations from NHH ∌ 10ÂČ⁰–10ÂČ⁷ cm⁻ÂČ . We examine how the NH distribution scales with galaxy and AGN properties. The dependence is generally simple, but AGN feedback may be necessary to explain certain trends in obscured fraction with luminosity and/or redshift. In our paradigm, the torus is not merely a bystander or passive fuel source for accretion, but is itself the mechanism driving accretion. Its generic properties are not coincidence, but requirements for efficient accretion

    BOUNDARY CONDITIONS FOR THE SCALAR FIELD IN THE PRESENCE OF SIGNATURE CHANGE

    Get PDF
    We show that, contrary to recent criticism, our previous work yields a reasonable class of solutions for the massless scalar field in the presence of signature change.Comment: 11 pages, Plain Tex, no figure

    Complex lapse, complex action and path integrals

    Get PDF
    Imaginary time is often used in quantum tunnelling calculations. This article advocates a conceptually sounder alternative: complex lapse. In the ``3+1'' action for the Einstein gravitational field minimally coupled to a Klein-Gordon field, allowing the lapse function to be complex yields a complex action which generates both the usual Lorentzian theory and its Riemannian analogue, and in particular allows a change of signature between the two. The action and variational equations are manifestly well defined in the Hamiltonian representation, with the momentum fields consequently being complex. The complex action interpolates between the Lorentzian and Riemannian actions as they appear formally in the respective path integrals. Thus the complex-lapse theory provides a unified basis for a path-integral quantum theory of gravity involving both Lorentzian and Riemannian aspects. A major motivation is the quantum-tunnelling scenario for the origin of the universe. Taken as an explanation for the observed quantum tunnelling of particles, the complex-lapse theory determines that the argument of the lapse for the universe now is extremely small but negative.Comment: 12 pages, Te

    Wyman's solution, self-similarity and critical behaviour

    Full text link
    We show that the Wyman's solution may be obtained from the four-dimensional Einstein's equations for a spherically symmetric, minimally coupled, massless scalar field by using the continuous self-similarity of those equations. The Wyman's solution depends on two parameters, the mass MM and the scalar charge ÎŁ\Sigma. If one fixes MM to a positive value, say M0M_0, and let ÎŁ2\Sigma^2 take values along the real line we show that this solution exhibits critical behaviour. For ÎŁ2>0\Sigma^2 >0 the space-times have eternal naked singularities, for ÎŁ2=0\Sigma^2 =0 one has a Schwarzschild black hole of mass M0M_0 and finally for −M02≀Σ2<0-M_0^2 \leq \Sigma^2 < 0 one has eternal bouncing solutions.Comment: Revtex version, 15pages, 6 figure

    Warming winters and New Hampshire’s lost ski areas: An integrated case study

    Get PDF
    New Hampshire’s mountains and winter climate support a ski industry that contributes substantially to the state economy. Through more than 70 years of history, this industry has adapted and changed with its host society. The climate itself has changed during this period too, in ways that influenced the ski industry’s development. During the 20th century, New Hampshire’s mean winter temperature warmed about 2.1° C (3.8° F). Much of that change occurred since 1970. The mult‐decadal variations in New Hampshire winters follow global temperature trends. Snowfall exhibits a downward trend, strongest in southern New Hampshire, and also correlates with the North Atlantic Oscillation. Many small ski areas opened during the early years while winters were cold and snowy. As winters warmed, areas in southern or lowelevation locations faced a critical disadvantage. Under pressure from both climate and competition, the number of small ski areas leveled off and then fell steeply after 1970. The number of larger, chairliftoperating ski areas began falling too after 1980. Aprolonged warming period increased the importance of geographic advantages, and also of capital investment in snowmaking, grooming and economic diversification. The consolidation trend continues today. Most of the surviving ski areas are located in the northern mountains. Elsewhere around the state, one can find the remains of “lost” ski areas in places that now rarely have snow suitable for downhill skiing. This case study demonstrates a general approach for conducting integrated empirical research on the human dimensions of climate change

    A systematic review of the impact of psychosocial factors on immunity: Implications for enhancing BCG response against tuberculosis.

    Get PDF
    Background: Tuberculosis (TB) remains an urgent global public health priority, causing 1.5 million deaths worldwide in 2018. There is evidence that psychosocial factors modulate immune function; however, how this may influence TB risk or BCG vaccine response, and whether this pathway can be modified through social protection, has not been investigated. This paper aims to: a) systematically review evidence of how psychosocial factors influence the expression of biomarkers of immunity, and b) apply this general evidence to propose plausible TB-specific pathways for future study. Methods: Papers reporting on the impact of psychosocial stressors on immune biomarkers in relation to infectious disease risk were identified through a search of the databases MEDLINE, PsycINFO, Global Health and PsycEXTRA alongside reference list and citation searching of key papers. Data extraction and critical appraisal were carried out using a standardised form. The findings were tabulated and synthesised narratively by infectious disease category, and used to propose plausible mechanisms for how psychosocial exposures might influence immune outcomes relevant to TB and BCG response. Results: 27,026 citations were identified, of which 51 met the inclusion criteria. The literature provides evidence of a relationship between psychosocial factors and immune biomarkers. While the direction and strength of associations is heterogenous, some overarching patterns emerged: adverse psychosocial factors (e.g. stress) were generally associated with compromised vaccine response and higher antibody titres to herpesviruses, and vice versa for positive psychosocial factors (e.g. social support). Conclusions: The evidence identifies pathways linking psychosocial factors and immune response: co-viral infection and immune suppression, both of which are potentially relevant to TB and BCG response. However, the heterogeneity in the strength and nature of the impact of psychosocial factors on immune function, and lack of research on the implications of this relationship for TB, underscore the need for TB-specific research
    • 

    corecore