480 research outputs found

    Variations of the ISM Compactness Across the Main Sequence of Star-Forming Galaxies: Observations and Simulations

    Get PDF
    (abridged) The majority of star-forming galaxies follow a simple empirical correlation in the star formation rate (SFR) versus stellar mass (MM_*) plane, usually referred to as the star formation Main Sequence (MS). Here we combine a set of hydro-dynamical simulations of interacting galactic disks with state-of-the-art radiative transfer codes to analyze how the evolution of mergers is reflected upon the properties of the MS. We present \textsc{Chiburst}, a Markov Chain Monte Carlo (MCMC) Spectral Energy Distribution (SED) code that fits the multi-wavelength, broad-band photometry of galaxies and derives stellar masses, star formation rates, and geometrical properties of the dust distribution. We apply this tool to the SEDs of simulated mergers and compare the derived results with the reference output from the simulations. Our results indicate that changes in the SEDs of mergers as they approach coalescence and depart from the MS are related to an evolution of dust geometry in scales larger than a few hundred parsecs. This is reflected in a correlation between the specific star formation rate (sSFR), and the compactness parameter C\mathcal{C}, that parametrizes this geometry and hence the evolution of dust temperature (TdustT_{\rm{dust}}) with time. As mergers approach coalescence, they depart from the MS and increase their compactness, which implies that moderate outliers of the MS are consistent with late-type mergers. By further applying our method to real observations of Luminous Infrared Galaxies (LIRGs), we show that the merger scenario is unable to explain these extreme outliers of the MS. Only by significantly increasing the gas fraction in the simulations are we able to reproduce the SEDs of LIRGs.Comment: 18 pages, 10 figures, accepted in Ap

    Toward a comprehensive understanding of intergroup contact: descriptions and mediators of positive and negative contact among majority and minority groups

    Get PDF
    Positive contact predicts reduced prejudice, but negative contact may increase prejudice at a stronger rate. The current project builds on this work in four ways: establishing an understanding of contact that is grounded in subjective experience, examining the affective mediators involved in the negative contact–prejudice relationship, extending research on the effects of positive and negative contact to minority groups, and examining the contact asymmetry experimentally. Study 1 introduced anger as a mediator of the relationships between positive and negative contact and prejudice among White Americans (N = 371), using a contact measure that reflected the frequency and intensity of a wide range of experiences. Study 2 found a contact asymmetry among Black and Hispanic Americans (N = 365). Study 3 found initial experimental evidence of a contact asymmetry (N = 309). We conclude by calling for a more nuanced understanding of intergroup contact that recognizes its multifaceted and subjective nature

    Merger Signatures in the Dynamics of Star-forming Gas

    Get PDF
    The recent advent of integral field spectrographs and millimeter interferometers has revealed the internal dynamics of many hundreds of star-forming galaxies. Spatially resolved kinematics have been used to determine the dynamical status of star-forming galaxies with ambiguous morphologies, and constrain the importance of galaxy interactions during the assembly of galaxies. However, measuring the importance of interactions or galaxy merger rates requires knowledge of the systematics in kinematic diagnostics and the visible time with merger indicators. We analyze the dynamics of star-forming gas in a set of binary merger hydrodynamic simulations with stellar mass ratios of 1:1 and 1:4. We find that the evolution of kinematic asymmetries traced by star-forming gas mirrors morphological asymmetries derived from mock optical images, in which both merger indicators show the largest deviation from isolated disks during strong interaction phases. Based on a series of simulations with various initial disk orientations, orbital parameters, gas fractions, and mass ratios, we find that the merger signatures are visible for ~0.2–0.4 Gyr with kinematic merger indicators but can be approximately twice as long for equal-mass mergers of massive gas-rich disk galaxies designed to be analogs of z ~ 2–3 submillimeter galaxies. Merger signatures are most apparent after the second passage and before the black holes coalescence, but in some cases they persist up to several hundred Myr after coalescence. About 20%–60% of the simulated galaxies are not identified as mergers during the strong interaction phase, implying that galaxies undergoing violent merging process do not necessarily exhibit highly asymmetric kinematics in their star-forming gas. The lack of identifiable merger signatures in this population can lead to an underestimation of merger abundances in star-forming galaxies, and including them in samples of star-forming disks may bias the measurements of disk properties such as intrinsic velocity dispersion

    SWISS MADE: Standardized WithIn Class Sum of Squares to Evaluate Methodologies and Dataset Elements

    Get PDF
    Contemporary high dimensional biological assays, such as mRNA expression microarrays, regularly involve multiple data processing steps, such as experimental processing, computational processing, sample selection, or feature selection (i.e. gene selection), prior to deriving any biological conclusions. These steps can dramatically change the interpretation of an experiment. Evaluation of processing steps has received limited attention in the literature. It is not straightforward to evaluate different processing methods and investigators are often unsure of the best method. We present a simple statistical tool, Standardized WithIn class Sum of Squares (SWISS), that allows investigators to compare alternate data processing methods, such as different experimental methods, normalizations, or technologies, on a dataset in terms of how well they cluster a priori biological classes. SWISS uses Euclidean distance to determine which method does a better job of clustering the data elements based on a priori classifications. We apply SWISS to three different gene expression applications. The first application uses four different datasets to compare different experimental methods, normalizations, and gene sets. The second application, using data from the MicroArray Quality Control (MAQC) project, compares different microarray platforms. The third application compares different technologies: a single Agilent two-color microarray versus one lane of RNA-Seq. These applications give an indication of the variety of problems that SWISS can be helpful in solving. The SWISS analysis of one-color versus two-color microarrays provides investigators who use two-color arrays the opportunity to review their results in light of a single-channel analysis, with all of the associated benefits offered by this design. Analysis of the MACQ data shows differential intersite reproducibility by array platform. SWISS also shows that one lane of RNA-Seq clusters data by biological phenotypes as well as a single Agilent two-color microarray

    Exact SO(8) Symmetry in the Weakly-Interacting Two-Leg Ladder

    Full text link
    A perturbative renormalization group analysis of interacting electrons on a two-leg ladder reveals that at half-filling any weakly repulsive system scales onto an exactly soluble Gross-Neveu model with a hidden SO(8) symmetry. The half-filled ground state is a Mott insulator with short-range d-wave pair correlations. We extract the exact energies, degeneracies, and quantum numbers of *all* the low energy excited multiplets. One energy (mass) m octets contains Cooper pair, magnon, and density-wave excitations, two more octets contain single-particle excitations, and a mass \sqrt{3}m antisymmetric tensor contains 28 "bound states". Exact single-particle and spin gaps are found for the lightly-doped (d-wave paired one-dimension Bose fluid) system. We also determine the four other robust phases occuring at half-filling for partially attractive interactions. All 5 phases have distinct SO(8) symmetries, but share S.C. Zhang's SO(5) as a common subgroup.Comment: RevTex, 35 pages with 15 figure

    Modeling the temporal dynamics of cervicovaginal microbiota identifies targets that may promote reproductive health (vol 9, 163, 2021)

    Get PDF
    Following the publication of the original article [1], the authors noticed a misspelling on the name of one of the co-authors. “Musie S. Ghebermichael” should read “Musie S. Ghebremichael” The original article has been updated

    Modeling the temporal dynamics of cervicovaginal microbiota identifies targets that may promote reproductive health

    Get PDF
    BACKGROUND: Cervicovaginal bacterial communities composed of diverse anaerobes with low Lactobacillus abundance are associated with poor reproductive outcomes such as preterm birth, infertility, cervicitis, and risk of sexually transmitted infections (STIs), including human immunodeficiency virus (HIV). Women in sub-Saharan Africa have a higher prevalence of these high-risk bacterial communities when compared to Western populations. However, the transition of cervicovaginal communities between high- and low-risk community states over time is not well described in African populations. RESULTS: We profiled the bacterial composition of 316 cervicovaginal swabs collected at 3-month intervals from 88 healthy young Black South African women with a median follow-up of 9 months per participant and developed a Markov-based model of transition dynamics that accurately predicted bacterial composition within a broader cross-sectional cohort. We found that Lactobacillus iners-dominant, but not Lactobacillus crispatus-dominant, communities have a high probability of transitioning to high-risk states. Simulating clinical interventions by manipulating the underlying transition probabilities, our model predicts that the population prevalence of low-risk microbial communities could most effectively be increased by manipulating the movement between L. iners- and L. crispatus-dominant communities. CONCLUSIONS: The Markov model we present here indicates that L. iners-dominant communities have a high probability of transitioning to higher-risk states. We additionally identify transitions to target to increase the prevalence of L. crispatus-dominant communities. These findings may help guide future intervention strategies targeted at reducing bacteria-associated adverse reproductive outcomes among women living in sub-Saharan Africa. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1186/s40168-021-01096-9
    corecore