14,913 research outputs found

    In-Situ Calorimetric Measurements for Space Exploration

    Get PDF

    A Numerical Treatment of Melt/Solid Segregation: Size of the Eucrite Parent Body and Stability of the Terrestrial Low-Velocity Zone

    Get PDF
    Crystal sinking to form cumulates and melt percolation toward segregation in magma pools can be treated with modifications of Stokes' and Darcy's laws, respectively. The velocity of crystals and melt depends, among other things, on the force of gravity (g) driving the separations and the cooling time of the environment. The increase of g promotes more efficient differentiation, whereas the increase of cooling rate limits the extent to which crystals and liquid can separate. The rate at which separation occurs is strongly dependent on the proportion of liquid that is present. As a result, cumulate formation is a process with a negative feedback; the more densely aggregated the crystals become, the slower the process can proceed. In contrast, melt accumulation is a process with a positive feedback; partial accumulation of melt leads to more rapid accumulation of subsequent melt. This positive feedback can cause melt accumulation to run rapidly to completion once a critical stability limit is passed. The observation of cumulates and segregated melts among the eucrite meteorites is used as a basis for calculating the g (and planet size) required to perform these differentiations. The eucrite parent body was probably at least 10-100 km in radius. The earth's low velocity zone (LVZ) is shown to be unstable with respect to draining itself of excess melt if the melt forms an interconnecting network. A geologically persistent LVZ with a homogeneous distribution of melt can be maintained with melt fractions only on the order of 0.1% or less

    Study of solid state photomultiplier

    Get PDF
    Available solid state photomultiplier (SSPM) detectors were tested under low-background, low temperature conditions to determine the conditions producing optimal sensitivity in a space-based astronomy system such as a liquid cooled helium telescope in orbit. Detector temperatures varied between 6 and 9 K, with background flux ranging from 10 to the 13th power to less than 10 to the 6th power photons/square cm-s. Measured parameters included quantum efficiency, noise, dark current, and spectral response. Experimental data were reduced, analyzed, and combined with existing data to build the SSPM data base included herein. The results were compared to analytical models of SSPM performance where appropriate models existed. Analytical models presented here were developed to be as consistent with the data base as practicable. Significant differences between the theory and data are described. Some models were developed or updated as a result of this study

    Testing Models of Counselor Development With a Measure of Counseling Self-Efficacy

    Get PDF
    Models of counselor development have become very popular, but empirical research has found differences primarily between beginning graduate students and doctoral interns, in the research described here, a counseling self-efficacy instrument was developed and was used to test hypotheses based on self-efficacy theory and models of counselor development, both of which would make similar predictions about increases in counseling self-efficacy resulting from clinical training and experience. The findings include strong reliability and validity evidence for the instrument and several significantly different groups of participants that correspond roughly to the groups hypothesized in stage models of counselor development

    The solid state photomultiplier: Status of photon counting beyond the near-infrared

    Get PDF
    Rockwell International's Solid State Photomultiplier (SSPM) is an impurity-band avalanche device which can count individual photons with wavelengths between 0.4 and 28 micrometers. Its response to a photon is a pulse of between 10(exp 4) and 10(exp 5) conduction electrons, making it an important device for use in phenomenology. The characteristics of the SSPM make it a potentially important device for use in astronomical applications. Contract NAS2-12400 was initiated in June 1986 to conduct modeling and characterization studies of the SSPM to provide a basis for assessing its use in astronomical systems. Some SSPM models and results of measurements which characterize the group of SSPMs recently fabricated on this contract are discussed

    Liquid metal magnetohydrodynamics (LMMHD) technology transfer feasibility study. Volume 1: Summary

    Get PDF
    The potential application of liquid metal magnetohydrodynamics (LMMHD) to central station utility power generation through the period to 1990 is examined. Included are: (1) a description of LMMHD and a review of its development status, (2) LMMHD preliminary design for application to central station utility power generation, (3) evaluation of LMMHD in comparison with conventional and other advanced power generation systems and (4) a technology development plan. One of the major conclusions found is that the most economic and technically feasible application of LMMHD is a topping cycle to a steam plant, taking advantage of high temperatures available but not usable by the steam cycle

    Solid state photomultiplier for astronomy, phase 2

    Get PDF
    Epitaxial layers with varying donor concentration profiles were grown on silicon substrate wafers using chemical vapor deposition (CVD) techniques, and solid state photomultiplier (SSPM) devices were fabricated from the wafers. Representative detectors were tested in a low background photon flux, low temperature environment to determine the device characteristics for comparison to NASA goals for astronomical applications. The SSPM temperatures varied between 6 and 11 K with background fluxes in the range from less than 5 x 10 to the 6th power to 10 to the 13th power photons/square cm per second at wavelengths of 3.2 and 20 cm. Measured parameters included quantum efficiency, dark count rate and bias current. Temperature for optimal performance is 10 K, the highest ever obtained for SSPMs. The devices exhibit a combination of the lowest dark current and highest quantum efficiency yet achieved. Experimental data were reduced, analyzed and used to generate recommendations for future studies. The background and present status of the microscopic theory of SSPM operation were reviewed and summarized. Present emphasis is on modeling of the avalanche process which is the basis for SSPM operation. Approaches to the solution of the Boltzmann transport equation are described and the treatment of electron scattering mechanisms is presented. The microscopic single-electron transport theory is ready to be implemented for large-scale computations
    corecore