9,423 research outputs found

    Ultrasonic scanning system for in-place inspection of brazed tube joints

    Get PDF
    A miniaturized ultrasonic scanning system for nondestructive in-place, non-immersion testing of brazed joints in stainless-steel tubing is described. The system is capable of scanning brazed tube joints, with limited clearance access, in 1/4 through 5/8 inch union, tee, elbow and cross configurations. The system has the capability to detect defective conditions now associated with material density changes in addition to those which are depended upon density variations. The system includes a miniaturized scanning head assembly that fits around a tube joint and rotates the transducer around and down the joint in a continuous spiral motion. The C-scan recorder is similar in principle to conventional models except that it was specially designed to track the continuous spiral scan of the tube joint. The scanner and recorder can be operated with most commercially available ultrasonic flaw detectors

    Ultrasonic scanning system for in-place inspection of brazed-tube joints

    Get PDF
    System detects defects of .051 cm in diameter and larger. System incorporates scanning head assembly including boot enclosed transducer, slip ring assembly, drive mechanism, and servotransmitter. Ultrasonic flaw detector, prototype recorder, and special recorder complete system

    Morphology and the gradient of a symmetric potential predicts gait transitions of dogs

    Get PDF
    Gaits and gait transitions play a central role in the movement of animals. Symmetry is thought to govern the structure of the nervous system, and constrain the limb motions of quadrupeds. We quantify the symmetry of dog gaits with respect to combinations of bilateral, fore-aft, and spatio-temporal symmetry groups. We tested the ability of symmetries to model motion capture data of dogs walking, trotting and transitioning between those gaits. Fully symmetric models performed comparably to asymmetric with only a 22% increase in the residual sum of squares and only one-quarter of the parameters. This required adding a spatio-temporal shift representing a lag between fore and hind limbs. Without this shift, the symmetric model residual sum of squares was 1700% larger. This shift is related to (linear regression, n = 5, p = 0.0328) dog morphology. That this symmetry is respected throughout the gaits and transitions indicates that it generalizes outside a single gait. We propose that relative phasing of limb motions can be described by an interaction potential with a symmetric structure. This approach can be extended to the study of interaction of neurodynamic and kinematic variables, providing a system-level model that couples neuronal central pattern generator networks and mechanical models

    Production, purification and crystallization of a trans-sialidase from Trypanosoma vivax

    Get PDF
    Sialidases and trans-sialidases play important roles in the life cycles of various microorganisms. These enzymes can serve nutritional purposes, act as virulence factors or mediate cellular interactions (cell evasion and invasion). In the case of the protozoan parasite Trypanosoma vivax, trans-sialidase activity has been suggested to be involved in infection-associated anaemia, which is the major pathology in the disease nagana. The physiological role of trypanosomal trans-sialidases in host-parasite interaction as well as their structures remain obscure. Here, the production, purification and crystallization of a recombinant version of T. vivaxtrans-sialidase 1 (rTvTS1) are described. The obtained rTvTS1 crystals diffracted to a resolution of 2.5 angstrom and belonged to the orthorhombic space group P2(1)2(1)2(1), with unit-cell parameters a = 57.3, b = 78.4, c = 209.0 angstrom

    Structural relaxations in electronically excited poly(para-phenylene)

    Full text link
    Structural relaxations in electronically excited poly(para-phenylene) are studied using many-body perturbation theory and density-functional-theory methods. A sophisticated description of the electron-hole interaction is required to describe the energies of the excitonic states, but we show that the structural relaxations associated with exciton formation can be obtained quite accurately within a constrained density-functional-theory approach. We find that the structural relaxations in the low-energy excitonic states extend over about 8 monomers, leading to an energy reduction of 0.22 eV and a Stokes shift of 0.40 eV.Comment: 4 pages, 3 figure

    Signatures of Galaxy-Cluster Interactions: Tully-Fisher Observations at z~0.1

    Full text link
    We have obtained new optical imaging and spectroscopic observations of 78 galaxies in the fields of the rich clusters Abell 1413 (z = 0.14), Abell 2218 (z = 0.18) and Abell 2670 (z = 0.08). We have detected line emission from 25 cluster galaxies plus an additional six galaxies in the foreground and background, a much lower success rate than what was found (65%) for a sample of 52 lower-richness Abell clusters in the range 0.02 < z < 0.08. We have combined these data with our previous observations of Abell 2029 and Abell 2295 (both at z = 0.08), which yields a sample of 156 galaxies. We evaluate several parameters as a function of cluster environment: Tully-Fisher residuals, H-alpha equivalent width, and rotation curve asymmetry, shape and extent. Although H-alpha is more easily detectable in galaxies that are located further from the cluster cores, we fail to detect a correlation between H-alpha extent and galaxy location in those where it is detected, again in contrast with what is found in the clusters of lesser richness. We fail to detect any statistically significant trends for the other parameters in this study. The zero-point in the z~0.1 Tully-Fisher relation is marginally fainter (by 1.5 sigma) than that found in nearby clusters, but the scatter is essentially unchanged.Comment: 27 pages including 5 figures; accepted for publication in the Astronomical Journa
    • …
    corecore