7,584 research outputs found

    The validity and reliability of the my jump 2 app for measuring the reactive strength index and drop jump performance

    Get PDF
    BACKGROUNDː This is the first study to independently assess the concurrent validity and reliability of the My Jump 2 app for measuring drop jump performance. It is also the first to evaluate the app’s ability to measure the reactive strength index (RSI). METHODSː Fourteen male sport science students (age: 29.5 ± 9.9 years) performed three drop jumps from 20 cm and 40 cm (totalling 84 jumps), assessed via a force platform and the My Jump 2 app. Reported metrics included reactive strength index, jump height, ground contact time, and mean power. Measurements from both devices were compared using the intraclass correlation coefficient (ICC), Pearson product moment correlation coefficient (r), Cronbach’s alpha (α), coefficient of variation (CV) and Bland-Altman plots. RESULTSː Near perfect agreement was seen between devices at 20 cm for RSI (ICC = 0.95) and contact time (ICC = 0.99) and at 40 cm for RSI (ICC = 0.98), jump height (ICC = 0.96) and contact time (ICC = 0.92); with very strong agreement seen at 20 cm for jump height (ICC = 0.80). In comparison with the force plate the app showed good validity for RSI (20 cm: r = 0.94; 40 cm; r = 0.97), jump height (20 cm: r = 0.80; 40 cm; r = 0.96) and contact time (20 cm = 0.96; 40 cm; r = 0.98). CONCLUSIONSː The results of the present study show that the My Jump 2 app is a valid and reliable tool for assessing drop jump performance

    Preventing Advanced Persistent Threats in Complex Control Networks

    Get PDF
    An Advanced Persistent Threat (APT) is an emerging attack against Industrial Control and Automation Systems, that is executed over a long period of time and is difficult to detect. In this context, graph theory can be applied to model the interaction among nodes and the complex attacks affecting them, as well as to design recovery techniques that ensure the survivability of the network. Accordingly, we leverage a decision model to study how a set of hierarchically selected nodes can collaborate to detect an APT within the network, concerning the presence of changes in its topology. Moreover, we implement a response service based on redundant links that dynamically uses a secret sharing scheme and applies a flexible routing protocol depending on the severity of the attack. The ultimate goal is twofold: ensuring the reachability between nodes despite the changes and preventing the path followed by messages from being discovered.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    The electronic structure of {\em R}NiC2_2 intermetallic compounds

    Full text link
    First-principles calculations of the electronic structure of members of the RRNiC2_2 series are presented, and their Fermi surfaces investigated for nesting propensities which might be linked to the charge-density waves exhibited by certain members of the series (RR = Sm, Gd and Nd). Calculations of the generalized susceptibility, χ0(q,ω)\chi_{0}({\bf q},\omega), show strong peaks at the same q{\bf q}-vector in both the real and imaginary parts for these compounds. Moreover, this peak occurs at a wavevector which is very close to that experimentally observed in SmNiC2_2. In contrast, for LaNiC2_2 (which is a superconductor below 2.7K) as well as for ferromagnetic SmNiC2_2, there is no such sharp peak. This could explain the absence of a charge-density wave transition in the former, and the destruction of the charge-density wave that has been observed to accompany the onset of ferromagnetic order in the latter.Comment: 5 pages, 7 figures. Accepted for publication in Phys. Rev.

    Tracking advanced persistent threats in critical infrastructures through opinion dynamics

    Get PDF
    Advanced persistent threats pose a serious issue for modern industrial environments, due to their targeted and complex attack vectors that are difficult to detect. This is especially severe in critical infrastructures that are accelerating the integration of IT technologies. It is then essential to further develop effective monitoring and response systems that ensure the continuity of business to face the arising set of cyber-security threats. In this paper, we study the practical applicability of a novel technique based on opinion dynamics, that permits to trace the attack throughout all its stages along the network by correlating different anomalies measured over time, thereby taking the persistence of threats and the criticality of resources into consideration. The resulting information is of essential importance to monitor the overall health of the control system and cor- respondingly deploy accurate response procedures. Advanced Persistent Threat Detection Traceability Opinion Dynamics.Universidad de MĂĄlaga. Campus de Excelencia Internacional AndalucĂ­a Tech

    Electrostatic considerations affecting the calculated HOMO-LUMO gap in protein molecules.

    Get PDF
    A detailed study of energy differences between the highest occupied and lowest unoccupied molecular orbitals (HOMO-LUMO gaps) in protein systems and water clusters is presented. Recent work questioning the applicability of Kohn-Sham density-functional theory to proteins and large water clusters (E. Rudberg, J. Phys.: Condens. Mat. 2012, 24, 072202) has demonstrated vanishing HOMO-LUMO gaps for these systems, which is generally attributed to the treatment of exchange in the functional used. The present work shows that the vanishing gap is, in fact, an electrostatic artefact of the method used to prepare the system. Practical solutions for ensuring the gap is maintained when the system size is increased are demonstrated. This work has important implications for the use of large-scale density-functional theory in biomolecular systems, particularly in the simulation of photoemission, optical absorption and electronic transport, all of which depend critically on differences between energies of molecular orbitals.Comment: 13 pages, 4 figure

    Predicting solvatochromic shifts and colours of a solvated organic dye: the example of nile red

    Get PDF
    The solvatochromic shift, as well as the change in colour of the simple organic dye nile red, is studied in two polar and two non-polar solvents in the context of large-scale time-dependent density-functional theory (TDDFT) calculations treating large parts of the solvent environment from first principles. We show that an explicit solvent representation is vital to resolve absorption peak shifts between nile red in n-hexane and toluene, as well as acetone and ethanol. The origin of the failure of implicit solvent models for these solvents is identified as being due to the strong solute-solvent interactions in form of π-stacking and hydrogen bonding in the case of toluene and ethanol. We furthermore demonstrate that the failures of the computationally inexpensive Perdew-Burke-Ernzerhof (PBE) functional in describing some features of the excited state potential energy surface of the S1 state of nile red can be corrected for in a straightforward fashion, relying only on a small number of calculations making use of more sophisticated range-separated hybrid functionals. The resulting solvatochromic shifts and predicted colours are in excellent agreement with experiment, showing the computational approach outlined in this work to yield very robust predictions of optical properties of dyes in solution

    Actors that Unify Threads and Events

    Get PDF
    There is an impedance mismatch between message-passing concurrency and virtual machines, such as the JVM. VMs usually map their threads to heavyweight OS processes. Without a lightweight process abstraction, users are often forced to write parts of concurrent applications in an event-driven style which obscures control flow, and increases the burden on the programmer. In this paper we show how thread-based and event-based programming can be unified under a single actor abstraction. Using advanced abstraction mechanisms of the Scala programming language, we implemented our approach on unmodified JVMs. Our programming model integrates well with the threading model of the underlying VM

    Completeness and confusion in the identification of Lyman-break galaxies

    Get PDF
    We have carried out a study to simulate distant clusters of galaxies in deep ground-based optical images. We find that when model galaxies are added to deep images obtained with the William Herschel Telescope, there is considerable scatter of the recovered galaxy colours away from the model values; this scatter is larger than that expected from photometric errors and is significantly affected by confusion, due to ground-based seeing, between objects in the field. In typical conditions of ≈\approx 1-arcsec seeing, the combination of confusion and incompleteness causes a considerable underestimation of the true surface density of z≈3z \approx 3 galaxies. We argue that the actual surface density of z≈3z \approx 3 galaxies may be several times greater than that estimated by previous ground-based studies, consistent with the surface density of such objects found in the HDF
    • 

    corecore