152 research outputs found

    Automated Adjustable Interval Insect Trap

    Get PDF
    An automated, adjustable-interval insect trap includes a plurality of individual cards having a surface coated with insect adhesive to capture insects. The cards are received on trays having wheels that engage a series of four parallel guide rails. By operation of a positioning mechanism, the trays carrying the cards are moved along the guide rails, one at a time, into an insect capturing position for a selected time interval. The positioning mechanism includes a timer, a drive motor, an axle operatively connected to the drive motor and a series of spaced fan plates mounted on the axle at longitudinally spaced positions. The plates function to sequentially pass the trays under the force of gravity along the guide rails as the axle is rotated by the drive motor

    Differential Undertaking Response of a Lower Termite to Congeneric and Conspecific Corpses

    Get PDF
    Undertaking behaviour is an essential activity in social insects. Corpses are often recognized by a postmortem change in a chemical signature. Reticulitermes flavipes responded to corpses within minutes of death. This undertaking behaviour did not change with longer postmortem time (24 h); however, R. flavipes exhibited distinctively different behaviours toward dead termites from various origins. Corpses of the congeneric species, Reticulitermes virginicus, were buried onsite by workers with a large group of soldiers guarding the burial site due to the risk of interspecific competition; while dead conspecifics, regardless of colony origin, were pulled back into the holding chamber for nutrient recycling and hygienic purposes. The burial task associated with congeneric corpses was coupled with colony defence and involved ten times more termites than retrieval of conspecific corpses. Our findings suggest elicitation of undertaking behaviour depends on the origin of corpses which is associated with different types of risk

    Insecticide Resistance in the Bed Bug Comes with a Cost

    Get PDF
    Adaptation to new environmental stress is often associated with an alteration of one or more life history parameters. Insecticide resistant populations of insects often have reduced fitness relative to susceptible populations in insecticide free environments. Our previous work showed that three populations of bed bugs, Cimex lectularius L., evolved significantly increased levels of resistance to one product containing both β-cyfluthrin and imidacloprid insecticides with only one generation of selection, which gave us an opportunity to explore potential tradeoffs between life history parameters and resistance using susceptible and resistant strains of the same populations. Life history tables were compiled by collecting weekly data on mortality and fecundity of bugs from each strain and treatment throughout their lives. Selection led to a male-biased sex ratio, shortened oviposition period, and decreased life-time reproductive rate. Generation time was shortened by selection, a change that represents a benefit rather than a cost. Using these life history characteristics we calculated that there would be a 90% return to pre-selection levels of susceptibility within 2- 6.5 generations depending on strain. The significant fitness costs associated with resistance suggest that insecticide rotation or utilization of non-insecticidal control tactics could be part of an effective resistance management strategy

    Microfabricated Surfaces for the Physical Capture of Insects

    Get PDF
    Novel devices and methods of capturing, controlling and preventing infestation of insects using microfabricated surfaces are provided. In particular, a mechanism of insect capture inspired by the microstructures of the leaf surfaces of plants and the key features of those surfaces with respect to the capture and control of pests have been determined and engineered into a variety of microfabricated surfaces capable of reproducing the effectiveness of these physical capture methods

    Microfabricated Sufaces for the Physical Capture of Insects

    Get PDF
    Novel devices and methods of capturing, controlling and preventing infestation of insects using microfabricated surfaces are provided. In particular, a mechanism of insect capture inspired by the microstructures of the leaf surfaces of plants and the key features of those surfaces with respect to the capture and control of pests have been determined and engineered into a variety of microfabricated surfaces capable of reproducing the effectiveness of these physical capture methods

    Population Variation In and Selection For Resistance to Pyrethroid-Neonicotinoid Insecticides in the Bed Bug

    Get PDF
    Pyrethroid resistance in bed bugs, Cimex lectularius, has prompted a change to combination products that include a pyrethroid and a neonicotinoid. Ten populations of bed bugs were challenged with two combination products (Temprid SC and Transport GHP). Susceptibility of these populations varied, with the correlated response of the two products indicating cross resistance. We imposed selection on three populations using label rate Temprid, and then reared progeny from unselected and selected strains. All selected strains were significantly less susceptible to Temprid SC than unselected strains. Temprid selected strains were also less susceptible to Transport. The pyrethroid component of Temprid showed a significantly higher LD50 in selected strains, but susceptibility to the neonicotinoid remained unchanged. Taken together these results indicate resistance to combination insecticides is present in field populations at levels that should be of concern, and that short-term selection affecting existing variance in susceptibility can quickly increase resistance

    Bed bug deterrence

    Get PDF
    A recent study in BMC Biology has determined that the immature stage of the bed bug (the nymph) signals its reproductive status to adult males using pheromones and thus avoids the trauma associated with copulation in this species. The success of this nymphal strategy of deterrence is instructive. Against the background of increasing problems with bed bugs, this research raises the question whether pheromones might be used to control them

    Better than DEET Repellent Compounds Derived from Coconut Oil

    Get PDF
    Hematophagous arthropods are capable of transmitting human and animal pathogens worldwide. Vector-borne diseases account for 17% of all infectious diseases resulting in 700,000 human deaths annually. Repellents are a primary tool for reducing the impact of biting arthropods on humans and animals. N,N-Diethyl-meta-toluamide (DEET), the most effective and long-lasting repellent currently available commercially, has long been considered the gold standard in insect repellents, but with reported human health issues, particularly for infants and pregnant women. In the present study, we report fatty acids derived from coconut oil which are novel, inexpensive and highly efficacious repellant compounds. These coconut fatty acids are active against a broad array of blood-sucking arthropods including biting flies, ticks, bed bugs and mosquitoes. The medium-chain length fatty acids from C8:0 to C12:0 were found to exhibit the predominant repellent activity. In laboratory bioassays, these fatty acids repelled biting flies and bed bugs for two weeks after application, and ticks for one week. Repellency was stronger and with longer residual activity than that of DEET. In addition, repellency was also found against mosquitoes. An aqueous starch-based formulation containing natural coconut fatty acids was also prepared and shown to protect pastured cattle from biting flies up to 96-hours in the hot summer, which, to our knowledge, is the longest protection provided by a natural repellent product studied to date

    Identification of Class I HLA T Cell Control Epitopes for West Nile Virus

    Get PDF
    The recent West Nile virus (WNV) outbreak in the United States underscores the importance of understanding human immune responses to this pathogen. Via the presentation of viral peptide ligands at the cell surface, class I HLA mediate the T cell recognition and killing of WNV infected cells. At this time, there are two key unknowns in regards to understanding protective T cell immunity: 1) the number of viral ligands presented by the HLA of infected cells, and 2) the distribution of T cell responses to these available HLA/viral complexes. Here, comparative mass spectroscopy was applied to determine the number of WNV peptides presented by the HLA-A*11:01 of infected cells after which T cell responses to these HLA/WNV complexes were assessed. Six viral peptides derived from capsid, NS3, NS4b, and NS5 were presented. When T cells from infected individuals were tested for reactivity to these six viral ligands, polyfunctional T cells were focused on the GTL9 WNV capsid peptide, ligands from NS3, NS4b, and NS5 were less immunogenic, and two ligands were largely inert, demonstrating that class I HLA reduce the WNV polyprotein to a handful of immune targets and that polyfunctional T cells recognize infections by zeroing in on particular HLA/WNV epitopes. Such dominant HLA/peptide epitopes are poised to drive the development of WNV vaccines that elicit protective T cells as well as providing key antigens for immunoassays that establish correlates of viral immunity. © 2013 Kaabinejadian et al
    • …
    corecore