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MICROFABRICATED SURFACES FOR THE 
PHYSICAL CAPTURE OF INSECTS 

2 
of the bed bugs. (See, for example, Richardson, H. H., J. 
Econ. Entomol. 36, 543 (1943), the disclosure of which is 
incorporated herein by reference.) The disadvantages of this 
approach include: the supply of a sufficient number of fresh CROSS-REFERENCE TO RELATED 

APPLICATIONS 

This application is a continuation of application Ser. No. 
14/381,890, filed Aug. 28, 2014, which application is a 
national stage application of Application No. PCT/US2013/ 
027772, filed Feb. 26, 2013, which application claims pri-
ority to Application No. 61/604,808, filed Feb. 29, 2012, the 
disclosures of which are incorporated herein by reference in 
their entirety. 

5 bean leaves, the inconvenience of having leaves spread on 
the floor, the inconsistencies inherent in such naturally 
occurring materials, and the rapid wilting/desiccation of the 
leaves that stop them from functioning in bed bug capture 
for longer than overnight. In addition, because the bean 

10 leaves are limited as to how and where they may be applied, 
bed bugs are able to avoid capture by crawling along 
surfaces that cannot easily be covered by the leaves. 

Despite its limitations, this physical capture mechanism is 
a source of inspiration in the development of new and 

STATEMENT OF FEDERAL FUNDING 

The invention described herein was made in the perfor-
mance of work under NSF Grant No. CHE-1057638, and the 
federal government may have rights in it subject thereto. 

15 sustainable non-chemical methods to control the burgeoning 
numbers of bed bugs. A purely physical management 
method has the additional advantage that it would avoid the 
problem of pesticide resistance that has been documented 
extensively for this insect. (Romero A, et al., J. Med. 

20 Entomol. 44, 175-178 (2007); Yoon K S ,  et al., J. Med. 
FIELD OF THE INVENTION 

The current invention is generally directed to methods of 
capturing, controlling and preventing infestation by insects; 
and more particularly to microfabricated surfaces for such 25 
use. 

BACKGROUND OF THE INVENTION 

Bed bugs (Cimex lectularius L.) are an ancient scourge 30 
that have made a dramatic comeback in recent years across 
the globe, infesting structures such as homes, hotels, 
schools, movie theaters, and hospitals. (See, e.g., Saenz V L, 
et al., J. Med. Entomol. 49, 865-875; Harlan J H., Out!. Pest 
Manag. 18, 57-61 (2007); and Potter MF, et al., Pest World 35 
September/October, 8-20 (2010), the disclosure of which is 
incorporated herein by reference.) There was a decline of 
bed bug infestations in the 1940's and 1950's following the 
application of DDT and other potent pesticides legal at the 
time. The recent resurgence of bed bug infestations occur- 40 
ring both domestically and internationally has led to a 
renewed interest in the development of new, more environ-
mentally friendly and sustainable methods to capture, con-
trol, and prevent bed bugs. 

To date, the primary strategy for bed bug abatement has 45 
been to develop and apply chemical pesticides. However, 
bed bugs have grown resistant to many of the commonly 
used pesticides making this approach increasingly ineffec-
tive. In addition, reliance upon pesticides is increasingly 
perceived as imprudent because of the large amount of 50 
potentially harmful chemicals that must be applied indoors 
in bedrooms and other sensitive locations. Non-chemical 
abatement methods such as heat, cold, vacuuming, and bed 
encasement, are being utilized as well but tend to be 
laborious, costly, and frequently ineffective. Such methods 55 
also tend to be curative rather than preventative in nature. 

For many years, bean leaves have been known to capture 
bed bugs. Historical reports describe the capture of bed bugs 
in Balkan countries by leaves from bean plants strewn on the 
floor next to beds. (See, e.g., Potter MF, Amer. Entomol. 57, 60 
14-25 (2011), the disclosure of which is incorporated herein 
by reference.) During the night, bed bugs walking on the 
floor would accumulate on these bean leaves, which were 
collected and burned the following morning to exterminate 
the bed bugs. The capture of bed bugs by the bean leaves 65 
was attributed to the action of microscopic plant hairs 
(trichomes) on the leaf surfaces that would entangle the legs 

Entomol. 45, 1092-1101 (2008); Zhu F, et al., Arch. Insect 
Biochem. 73, 245-257 (2010); and Mamidala P, et al., BMC 
Genomics 13 (2012), the disclosure of which is incorporated 
herein by reference.) Accordingly, a need exists to create 
improved techniques and devices to capture, control and 
prevent infestation by bed bugs and other insects. 

SUMMARY OF THE INVENTION 

In some embodiments, the invention is directed to a 
microfabricated insect capturing surface including: 

a substrate defining a plane; 
a plurality of insect capture surface microstructures each 

formed from a flexible elongated member, the plurality 
of surface microstructures being disposed on the sub-
strate with a variable orientation to the plane of the 
substrate and at a density sufficient such that multiple 
insect capture surface microstructures are capable of 
simultaneously interacting with an insect disposed 
thereon; 

wherein at least some of the surface microstructures have 
a recurved body capable of entangling the insect, and 
wherein at least some of the surface microstructures 
include a piercing element being sufficiently rigid and 
sharp to pierce the insect body; and 

wherein the surface microstructures are formed from a 
material having a breaking stress sufficiently large to 
avoid breakage during interaction with the insect. 

In some such embodiments, each of the plurality of insect 
capture surface microstructures has a recurved body, and 
wherein at least one piercing tip is incorporated onto each of 
said insect capture surface microstructures. 

In other such embodiments, the piercing tip is disposed at 
the terminating end of the elongated member. In these 
embodiments, the surface microstructures may include at 
least two piercing tips, and wherein the piercing tips are 
disposed along the body of elongated member. 

In still other embodiments, the recurved body is formed in 
a shape selected from the group consisting of a hook, curve, 
loop or hoop. 

In yet other embodiments, the piercing tip is selected from 
the group consisting of a sharp point, hook or barb. 

In still yet other embodiments, the plurality of surface 
microstructures are dimensioned such that engage the under-
side of the insect body. 

In still yet other embodiments, the piercing tip has a 
diameter of about 100 to 1000 nm. 



US 9,930,877 B2 
3 

In still yet other embodiments, the elongated member has 
a Young's Modulus of from 1 to 23 GPa. 

In still yet other embodiments, the surface micro structures 
are modeled on a plant trichome. In these embodiments, the 
plant trichome may be modeled on one plant selected from 
the group Phaseolus coccineus, Phaseolus vulgaris, Phaseo-
lus limensis, Passiflora morifolia, Cynnoglossum oiftcinale 
and Caiophora coronaria. 

4 
top view of an insect capture surface and the density of 
microstructures on a surface, and (E) a schematic of an 
embodiment of an insect capture surface showing the vari-
able orientations of disposed surface microstructures. 

FIGS. 3A to 3E provide: schematics of (A) fabrication of 
biomimetic surfaces from bean leaves (1-3), a negative 
molding material is poured onto a leaf surface and pressure 
is applied ( 4-6), the leaf is removed, and the negative mold 
is filled with the positive replica material (7), and the In still yet other embodiments, the surface micro structures 

are disposed on the substrate in a density of between 20 to 
300 surface microstructures per millimeter. 

In still yet other embodiments, the surface micro structures 
are formed from a material selected from the group consist-
ing of polymeric materials, natural fibers, metals, oxides and 
nano- or micro-engineered structures. 

10 negative mold is removed leaving the biomimetic replica; (B 
& C) LV-SEM images of the bean leaf show the surface 
density of trichomes and the recurved, sha r p  trichome tips; 
and (D & E) SEM images of the replicate materials appear 
identical to the natural leaves. 

In still yet other embodiments, the elongated member is 
formed of a hollow body. 

15 FIGS. 4A & 48 provide SEM images of a cross-section of 
negative molding material showing an embedded natural 
trichome tip that has broken off the natural leaf trichome 
during molding. 

FIGS. SA to SD provide: LV-SEM images of bed bug legs 
In other embodiments the invention is directed to a 

method of manufacturing a micro fabricated insect capturing 
surface comprising: 

providing a substrate; 
disposing a plurality of insect capture surface micro struc-

tures thereon, each formed from a flexible elongated 
member, the plurality of surface microstructures being 
disposed on the substrate with a variable orientation to 
the plane of the substrate and at a density sufficient such 
that multiple insect capture surface microstructures are 
capable of simultaneously interacting with an insect 
disposed thereon; 

20 on bean leaf surfaces with hooked trichomes, where (A) 
shows piercing under a pretarsal claw leads to capture of a 
bug by a leaf, (B) piercing occasionally occurs at a tarsal 
intersegmental membrane, also causing capture of a bug, (C) 
a higher magnification of piercing from (A), and (D) in 

25 contrast, hooking causes momentary snags of a bug leg. 

wherein at least some of the surface microstructures have 30 
a recurved body capable of entangling the insect, and 
wherein at least some of the surface microstructures 
include a piercing element being sufficiently rigid and 
sharp to pierce the insect body; and 

wherein the surface microstructures are formed from a 35 
material having a breaking stress sufficiently large to 
avoid breakage during interaction with the insect. 

In some embodiments, the process of depositing is con-
ducted by one of either a double molding or etching process. 

In other embodiments, the method further comprises 40 
coating on or incorporating within the surface microstruc-
tures an additive material selected from the group consisting 
of oxide particles and a metallic material. In these embodi-
ments, the additive material may be deposited by a technique 
selected from one of either physical vapor deposition or 45 
electro deposition. 

In still other embodiments, the process of depositing is 
conducted by a microneedle technology. 

In yet other embodiments, the recurve is formed into the 
surface microstructures by one of either an oblique e-beam 50 
irradiation or metal deposition. 

BRIEF DESCRIPTION OF THE DRAWINGS 

FIG. 6 provides an image of the underside of a bed bug 
tarsus showing a dangling broken trichome as evidence of 
piercing. 

FIGS. 7A to 7D provide images showing the discrimina-
tion between natural and synthetic trichome tips on hybrid 
surfaces using energy dispersive spectroscopy (EDS), where 
(A) is anLV-SEM image ofa trichome on a natural bean leaf
surface and the locations of EDS spectra are identified ((al)
shows a strong silicon sig nature compared to the base (a2) 
and leaf surface (a3)); (B) shows an SEM image showing
both a hybrid tip (bl) and non-hybrid tip (b2) and their
corresponding EDS spectra showing the presence or absence
of detectable silicon respectively; (C) shows EDS mapping
of trichomes on the leaf surface showing the presence of
silicon on the natural trichomes; and (D) shows a represen-
tative synthetic surface showing examples of natural
trichome tips incorporated into the polymer surface (indi-
cated by the presence of silicon) along with an example of
a fully-synthetic trichome (indicated by the circle).

FIGS. S A  to SC provide: (A) diagrams, and (B & C) SEM 
images demonstrating the successful molding of the hooked 
trichomes of Phaseolus vulgaris (Kidney bean) in polyvi-
nylsiloxane (the negative mold). 

FIGS. 9A to 9C provide images of typical biomimetic 
hooks fabricated by dual molding method, wherein: (A) 
shows low magnification image showing epoxy recurved 
trichomes from a scarlet runner bean, (B) a vein on a 
biomimetic kidney bean leaf where the hooks are made from 
wood glue, and (C) a close view of the sha r p , epoxy hooks 

The description will be more fully understood with ref-
erence to the following figures and data graphs, which are 
presented as exemplary embodiments of the invention and 
should not be construed as a complete recitation of the scope 

55 replicated from a scarlet runner bean. 

of the invention, wherein: 
FIGS. l A  to l D  provide: images of a scarlet runner bean 60 

leaf in visible light (A), and viewed in SEM (B, C, D) 
showing the sha r p  points on the hooked trichomes, and their 
variable spacing and orientation on the surface of the leaf. 

FIGS. 2A to 2E provide: (A) a schematic of embodiments 
of an insect capture surface, (B) a schematic of embodiments 65 
of an insect capture microstructure, (C) schematics of alter-
native embodiments of insect capture microstructures, (D) a 

DETAILED DESCRIPTION OF THE 
INVENTION 

This description embodies constructs and methods of 
capturing, controlling and preventing infestation of insects 
using microfabricated surfaces. In particular, the mecha-
nisms of bed bug capture by the micro structures of the leaf 
surfaces of four species of plants: Phaseolus vulgaris (three 
varieties used: kidney bean, pole bean, and green bean), 
Phaseolus coccineus (scarlet runner bean), Phaseolus 
limensis (lima bean) and Passiflora morifolia (passion 
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flower), have been examined and the key features of those 
surfaces with respect to the capture and control of pests 
determined and engineered into a variety of micro fabricated 
surfaces capable of reproducing the effectiveness of these 
physical capture methods. 

6 

Although hooked trichomes have been documented in 
insect capture at times in the literature: the capture of 
nymphal and adult leafhoppers by Phaseolus vulgaris (Pil-
lemer, E.; Tingey, W., Science 1976, 193, 482-484, the 
disclosure of which is incorporated herein by reference), a 10 
variety of insects in the Arizona desert by Mentzelia pumila 
(Eisner, T.; Eisner, M.; Hoebeke, E. R., Proceedings of the 
National Academy of Sciences 1998, 95 (8), 4410-4414, the 
disclosure of which is incorporated herein by reference), and 
the capture of caterpillars by Passiflora adenopoda (Gilbert, 15 
L. E., Science 1971, 172, 585-586, the disclosure of which 

the insect capture microstructure and the vulnerable portion 
of the insect, three separate factors need to engineered: the 
density of the capture microstructures, the orientation of the 
microstructures relative to the plane of the substrate, and the 
structure of each of the individual capture microstructures. 
Embodiments of each of these elements are described above. 

Turning first to the structure of the individual microstruc-
tures, the observations of the interactions of insects with 
different plant structures have shown several important 
functional aspects of a successful piercing capture micro-
structure. Embodiments of exempla r y  structures are shown 
in FIGS. 28 and 2C. As shown, the microstructures gener-
ally comprise a flexible elongated member (16) that provides 
at least an entangling function. The surface must also 
include a piercing microstructure disposed thereon (18). 
These microstructures may be independent or, as shown in 

is incorporated herein by reference), to date the only report 
of hooked trichomes on a plant capable of capturing bed 
bugs is the bean plant, Phaseolus vulgaris. (Richardson, 
cited above.) Effective capture of bed bugs by hooked 20 
trichomes on other surfaces have now been examined, and 
those features that tend to lead to capture of such insects 
determined. In particular, it has been discovered that the 
specific material properties and shape of micro structures, the 
density ( spacing) of trichomes on the surfaces of specific 25 
types of plants, and their orientation is extremely variable 

FIGS. 2A to 2C, they may be combined into a single 
structure. However, regardless of how the capture micro-
structures are individually engineered, the capture surface 
should have the following functional characteristics: resil-
iency or flexibility, the ability to entangle, and the ability to 
pierce an insect. 

First, to ensure that the elongated member is capable of 
moving across the body of the insect to entangle and interact 
with a vulnerable portion of the insect, and to make it more 
likely that the insect will become entangled, and make it 

(as shown in FIG. 1), and appears to be directly related to 
efficiency of bed bug capture across plant species. In addi-
tion, specific densities oftrichomes have also been shown to 
affect the capture of other insects, such as, for example, 30 
leafhoppers. 

more difficult for the insect to remove itself from the 
piercing member, the elongated member should be flexibly 
resilient. The flexibility of the members may be a function 
of the material from which the member is made, it may be 
a function of the structure of the member, or it may be a 

All of the plant species studied appear in the first instance 
to have a similar surface texture that contains flexible 
microscopic microstructures or hairs having pointed or 
barbed ends, that are often hooked, i.e., a trichome structure. 
In order to understand the capture effectiveness of these 
natural surfaces, the features that make such surfaces effec-
tive have been evaluated. (These studies are described in 
greater detail in the Exempl a r y  Embodiment section below.) 
For example, optical and SEM images ofleafundersurfaces 
are shown in FIG. 1. In addition, bed bugs were placed 
individually onto leaves and their movements recorded as 
digital movies. As a bed bug walks on one of these leaves, 
entanglement of a leg by a trichome causes a visible change 
in its walking behavior. Based on these observations, two 
discreet categories of entanglement have been identified: 

a momenta r y  snag of a leg with the insect still able to 
break away (usually within a second); and 

a more involved and irreversible snare in which a visibly 
struggling insect is unable to pull away. 

The production of effective insect capture surfaces depends 
on determining and maximizing the production of surface 
microstructures that lead to the second, irreversible type of 
entanglements. 
Embodiments of Insect Capture Surfaces 

Based on detailed observations of several varieties of 
natural leaf surfaces and their specific ability to capture 
insects, it is now possible to create effective insect capturing 
surfaces that maximize irreversible snaring interactions with 
the insects of choice. Because it has now been discovered 
that a simply hooking action is insufficient to permanently 
snare the insects, embodiments include surface microstruc-
tures that are desig ned to both entangle and pierce. As shown 
in FIG. 2A, these surfaces (10) generally include a plurality 
of entangling and piercing microfabricated insect capture 
microstructures (12) formed on a supporting substrate (14). 
To optimize the probability of a piercing interaction between 

combination of these. More specifically, the flexibility of the 
member may be ensured by forming the member with a 
curved or recurved portion (20). This curve/recurved portion 

35 (20) provides a natural resilient spring functionality to the 
elongated member (16). In some instances, as shown in FIG. 
28, the recurved portion is positioned at the distal end of the 
elongated member such that the overall shape of the insect 
capture microstructure is of a hook or J-shaped structure. 

40 Alternatively, as shown in FIG. 2C the entire elongated 
member may form a curve, or may be curved to such an 
extent that the member forms a hoop or a loop. These 
structures may be hollow or solid, but should be sufficiently 
flexible that they will deform when interacting with an insect 

45 of interest. 
Regardless of the nature of the curved/recurved portion of 

the elongated member (16), a piercing element (18) should 
be incorporated into the overall functionality of the surface. 
The piercing member may comprise any member suitable 

50 for piercing an insect, including, for example, a rigid straight 
or curved sharp tip, barb, or hook (18), which is either 
disposed directly on the substrate or located on the elongated 
member itself, either at the terminating end of the member 
or somewhere along the curved/recurved portion (20) of the 

55 member. 
The dimensions of the elongated member and piercing 

structure, and their placement may be controlled to increase 
the probability that a piercing event will incur when the 
microstructures interact with and pierce an insect. More 

60 specifically, the sharpness of the natural trichome points are 
designed to be sufficiently rigid and sha r p  to ensure the 
ability to pierce the target insect. In some embodiments, for 
example, the piercing microstructure may have a tip dimen-
sioned from about 100-1000 nm, and in some embodiments 

65 about 100 to 300 nm. Likewise, as shown in FIG. 2C the 
sharp point, hook, or barb may be disposed at the terminal 
end of the elongated member, or along the body of the 
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curved elongated member itself, or on separate structures 
disposed along the elongated member. In the case of the 
separate structure it may take any suitable form, but in some 
embodiments comprises barbed hoops or partial loops. 
Regardless of the positioning, shape, or nature of the pierc-
ing element, in these embodiments the piercing element is 
formed to be sufficiently rigid and sha r p  that they are 
capable of piercing the vulnerable areas on an insect or bed 
bug, such as the underside of the insect/bug body or legs or 
tarsus, or other vulnerable area of the body. 10 

In embodiments where the piercing element is located 
along the elongated flexible member, the member is also 
dimensioned such that the piercing portion of the member is 
capable of interacting with the vulnerable portion of the 
insect of interest. For example, on the bed bug one of the 15 
most vulnerable target portions is the underside of the insect, 
and more particularly the areas on the tarsus underneath the 
tarsal claws and the intersegmental membrane between the 
tarsal subsegments, which is approximately 50 to 100 
microns in height. 20 

An exempla r y  structure would be one that mimics the 
shape and functionality of a plant trichome. However, it 
should be understood that any structure having suitable 
length, strength and structural microstructures may be used 
in association with the insect capture surfaces described 25 
herein. Likewise, although embodiments of structures 
formed from specific polymer materials are described in the 
sections below, it should be understood that the substrate and 
insect capture microstructures of the embodiments may be 
formed from any material having suitable breaking stress 30 
properties including, polymeric materials, natural fibers, 
metals and oxides. Alternatively, the structures may be made 
of materials or composites that include microengineered 
structures such as carbon-nanotubes or other such materials. 
Finally, the breaking stress of the material from which the 35 
insect capture microstructures should be formed should 
match or exceed the breaking stress of a natural plant 
trichome material, and more specifically the kidney bean 
trichome. In a rare example of mechanical testing of 
trichomes, individual bending tests resulted in a range of 40 
1-23 GPa for Young's modulus (flexural) (fruit hooks of 
Galium aperine). (See, Garb E V, et al., In Design and 
Nature: Comparing Design in Nature with Science and 
Engineering (CA Brebbia, L Sucharov, P Pascola, Eds.), pp. 
151-160. Southampton, UK: WIT Press (2002), the disclo- 45 
sure of which is incorporated herein by reference.) There-
fore, in some embodiments the materials used to generate 
the synthetic surfaces should be comparable in material 
properties to these trichome walls. Qualitatively, these bend 
test values demonstrate that plant trichomes have a large 50 
breaking strain, as indicated by their ability to bend com-
pletely over and elastically return to an upright orientation 
without breaking. In addition, the curved portions of the 
trichomes are typically able to straighten and elastically 
return to their curved configuration when pulled from the 55 
negative mold; freeze-fracture of the negative molds showed 
none of the damage or ripping that would be caused by a 
non-straightened hook pulling through the material. There-
fore, qualitatively the synthetic insect capture microstruc-
tures preferably show similar mechanical behavior in this 60 
regard. 

Although the structure of the insect capture microstruc-
tures themselves is important, as discussed above it is also 
important that these microstructures be deposited on the 
supporting substrate in a marmer that will allow them to 65 
function to capture the insects of interest. In particular, in 
embodiments the orientation and density of the microstruc-

8 
tures on the substrate can be controlled to improve the 
performance of the insect capture structures. In particular, in 
some embodiments the insect capture microstructures are 
disposed on the substrate with the following constraints: 

The insect capture microstructures are disposed on the 
substrate with a density sufficient that an insect will 
interact with multiple microstructures simultaneously, 
and in fact preferably (although not necessarily) that 
multiple legs of the insect will be captured by the 
surface at once. Obviously, such a density will be 
partially dependent on the insect being captured. How-
ever in some embodiments, the density of capture 
microstructures ranges from 30-200 microstructures/ 
square millimeter (as shown in FIG. 2D). Another way 
of describing the distribution of elements in space is the 
linear distance between the elements. Under this rubric, 
in some embodiments the range of the "nearest neigh-
bor" (linear distance from microstructure to micro-
structure on the surface) ranges from 20-120 microm-
eters. These micro structures may be arranged randomly 
(in the two-dimensional space of a leaf surface), or 
regularly (as in a square or hexagonal grid), or a 
combination so long as the density of micro structures is 
adequate. 

Because it is desired that the microstructures interact with 
the insect regardless of the orientation of the insect with 
the substrate, it is preferred that the microstructures are 
placed on the surface with variable orientation (i.e., the 
angle of the longitudinal axis of the elongated member 
(22) to the horizontal plane of the substrate, as shown
in FIG. 2E) so that the microstructures will interact
with the insect from a variety of angles and orienta-
tions.

It should be understood that though specific densities and 
orientations are described herein that other densities and 
orientations may be implemented for the specific insect or 
capture structure used. 

Turning to the construction of the substrate, although all 
of the above embodiments have shown a flat substrate of 
regular contour, it should be understood that the substrate 
may take any form suitable for the acceptance of the insect 
capture microstructures. For example, the substrate may be 
contoured or curved to conform to any desired surface. 
Likewise, the plane of the substrate may be undulating or 
include steps or any other features desired for the specific 
application, or to enhance the likelihood of entangling the 
insect. Finally, the substrate itself may be made of any 
material compatible with the deposition of the insect capture 
microstructures. 
Embodiments of Methods of Forming Insect Capture Sur-
faces 

The invention is further directed to a method for gener-
ating such insect capture surfaces. The challenge in the 
microfabrication of such pest capturing microfabricated 
surfaces is to accurately reproduce the high aspect ratio 
microstructures ( e.g., sharp-tipped recurved trichomes 
which are about 50 microns long with a 10 micron diameter) 
present in the plant surface morphology. Additionally, it is 
necessa r y  to faithfully reproduce the surface density and 
geometric orientation of the surface microstructures. 
Although a number of methods may be used, including 
three-dimensional growth, etching, deposition, etc., in one 
embodiment the surfaces are formed with sufficient accuracy 
using a method based upon a double molding process. (See, 
e.g., Schulte, A. J., et al., Acta Biomaterialia 2009, 5, 
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1848-1854; and Koch, K, et al., Bioinspiration and Biomi-
metics 2008, 3, 046002, the disclosures of which are incor-
porated herein by reference.) 

A schematic diagram of embodiments of the microfabri-
cation process according to some embodiments of the inven- 5 
tion, and consisting of the seven steps shown in FIG. 3. As 
shown in Steps 1-3, a desired surface (such as a bean leaf) 

10 
fidelity of the proposed replication process, a bean leaf was 
reproduced and both the negative and the positive molds 
were examined using standard high vacuum scanning elec-
tron microscopy (SEM) techniques. Finally, the ability of 
these microfabricated surfaces to interfere with bed bug 
locomotion has been evaluated by recording movies of live 
bed bugs running on these fabricated surfaces. In the study, 
bugs are dropped onto the hooked material and recorded for 
a minimum of one minute, and it is shown that the bugs are 
hooked on the inventive micro fabricated surfaces. The 
surfaces are scored by the number of steps a bug takes until 
it appears to have trouble moving any tarsi (feet), in parallel 
with the studies of bug movements on the natural leaf 

is impressed into a flexible polymer (President Plus Jet Light 
Body, a polyvinylsiloxane) thin film in order to create a 
flexible negative polymer mold (see FIG. 3). In Steps 4-6, 10 
the desired surface is removed from this mold and a positive 
replica is created in the mold using an epoxy-based polymer. 
Finally, in Step 7, the negative mold is physically peeled off 
the epoxy thin film to create the active biomimetic insect 
capture surface. 15 surfaces. 

Material and Methods 
Experimental Organisms 
Kidney beans (Phaseolus vulgaris L.) were raised from 

seeds (Johnny's Seeds, Product 2554). Individual leaves 
(trifoliate, node2:l) were severed where the base of petiole 
met the stem, were sealed in bags with moistened paper to 
remain hydrated prior to experimentation, and were used 
within a few hours. Bed bugs (Cimex lectularius) were 
raised at the University of Kentucky and were not fed within 
three weeks before use. All bugs used were male adults. 

Imaging Techniques 
Digital movies were acquired on a Sony HDR-CXlOO at 

30 frames/s with a resolution of 2016 pixels by 1134 pixels 
(this corresponds to a spatial resolution of 0.1 mm for the 

Although the molding method, using leaves with hooked 
trichomes as models, has generated extremely promising 
biomimetic materials for bed bug capture, it should be 
understood that additional options and modifications may be 
made to further improve these materials. First, while a 20 
molding procedure was used to generate the synthetic sur-
faces it generates a solid (filled) object, which is necessarily 
less stiff in bending and twisting than a hollow object. The 
stalks of the natural trichomes are hollow, while the micro-
fabricated trichomes generated via a molding technique are 25 
solid (and therefore less flexible). Accordingly, it might be 
possible to increase the flexibility of the microstructure by 
generating thinner (and therefore more flexible) microstruc-
tures using different techniques (a non-molding microfabri-
cation method). 

Second, methods to manipulate the material properties 
post-molding may be used, such as adding oxide particles to 
strengthen the material, and/or adding a metallic coating 
either by physical vapor deposition or electro deposition. 
(See, Wetzel, B.; Haupert, F.; Zhang, M. Q., Composites 35 
science and technology 2003, 63, 2055-2067, the disclosure 

30 field of view used). The camera was positioned in a vertical 
orientation (viewing a bug on a surface dorsally from 
above), while the leaf or synthetic surface was oriented 
horizontally. A leaf or its synthetic analog was placed with 

of which is incorporated herein by reference.) Also, other 
plant species offer promising trichome geometries, including 
Cynnoglossum oiftcinale and Caiophora coronaria, both of 
which have barbed hooks on their surfaces. (Koch, K.; 40 
Bhushan, B.; Barthlott, W., Progress in Materials Science 
2009, 54, 137-178, the disclosure of which is incorporated 
herein by reference.) 

In some embodiments, a micro-needle technology may be 
used, which would offer the advantage of generating uni- 45 
formly sharp structures of the proper length scale. (Henry, 
S.; McAllister, D. V.; Allen, M. G.; Prausnitz, M. R., Journal 
of Pharmaceutical Sciences 1998, 87 (8), 922-925; and Park, 
J.-H.; Allen, M. G.; Prausnitz, M. R., Journal of Controlled 
Release 2005, 104, 55-61, the disclosures of which are 50 
incorporated herein by reference.) With pointed polymeric 
structures the next challenge is to recurve the structures 
without dulling the sha r p  points, which can be done with 
oblique e-beam irradiations or metal deposition. (See, e.g., 
Kim, T.; Pang, C.; Suh, K Y., Langmuir 2009, 25 (16), 55 
8879-8882; and Choi, M. K.; Yoon, H.; Lee, K; Shin, K, 
Langmuir 2011, 27, 2132-2137, the disclosures of which are 
incorporated herein by reference.) 
Exemplary Embodiments 

Studies were undertaken to identify the essential features 60 
of the capture mechanics of bean leaves to guide the design 
and micro-fabrication of biomimetic surfaces for bed bug 
capture. The interaction of bed bug tarsi with the micro-
scopic plant trichomes was evaluated by videography and 
scanning electron microscopy (SEM). Synthetic surfaces 65 
were micro fabricated using a template method and evaluated 
for hindrance of bed bug locomotion. In order to validate the 

the abaxial side (undersurface) facing upward, and a single 
bug was introduced to the center of the surface by gently 
tipping the bug from a glass vial approximately 2 cm above 
the surface. The abaxial side usually has a greater density of 
hooked trichomes than the adaxial side in many species, 
including Phaseolus vulgaris [9-11, 18, 19] although this is 
not universal [20, 21]. (Riddick E W, Wu Z., Biocontrol 56, 
55-63 (201 O); Johnson B., B. Entomol. Res. 44, 779-788 
(1953); Jeffree C E., Insects and the Plant Surface (B 
Juniper, R Southwood, Eds.), pp. 23-64. London: Edward 
Arnold Ltd. (1983); Dahlin R M, et al., Econ. Bot. 46, 
299-304 (1992); Bauer G, et al., P. Roy. Soc. B-Biol. Sci. 278, 
2233-2239 (2011); Stenglein SA,  et al., Aust. J. Bot. 52, 
73-80 (2004); and Pillemer E & Tingey W., Science 193, 
482-484 (1976), the disclosures of which are incorporated
herein by reference.) All recordings were made at ambient
temperature (22-24 ° C.). 

All SEM imaging was performed on a FEI Quanta 3D 
FEG Dual Beam SEM (FEI, Hillsboro, Oreg.). For low-
vacuum SEM (LV-SEM), captured bugs on leaves were 
prepared by cutting the leaf around the captured bug to a size 
approximating the size of an SEM stub, and mounting the 
leaf piece with its attached bug on the SEM stub with copper 
tape. In order to confirm and quantify the number of piercing 
trichomes, every specimen was repeatedly tilted to view 
underneath the tarsi of all six legs. LV-SEM images were 
attained at a pressure of0.6 mbar and 5 kV with water as the 
ionizing gas. Bugs were still alive and resumed struggling 
after removal from the LV-SEM. 

For high vacuum SEM (HV-SEM) imaging of replica 
materials, samples were sputtered with iridium (IBS/e, 
South Bay Technology, Inc) with a 60-degree tilt angle and 
constant rotation for 4 minutes (-5 nm Ir). Images of the 
microstructures were acquired at 5 kV. 
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EDS (50 mm X-MAX, Oxford Instruments, INCA 4.15) 
was performed using the FEI Quanta 3D FEG Dual Beam 
SEM (FEI, Hillsboro, Oreg.) on samples at 10 kV with a 
current of0.75 nAat a working distance of8 mm. Elemental 
mapping was executed over the desired area for 230 s to 5 
determine the presence of silicon. Carbon, oxygen, sulfur, 
and iron were also imaged as controls to account for the 
topography of the sample surface. Synthetic surfaces were 
prepared as described above for HV-SEM imaging including 
sputtering with iridium. Natural leaf controls used the same 10 
EDS parameters, but in LY-mode at 0.6 mbar and without 
sputtering. 

Techniques Used to Study the Locomotion Hindrance of 
Bugs by Surfaces 

Digital movies were reviewed to identify changes in bug 15 
locomotion associated with mechanical interactions with the 
natural leaf or synthetic surfaces that interrupted normal 
movements. Incidents of momentary or prolonged strug-
gling by the bug as one or more legs were stuck in place 
were tabulated. The number oflocomotory cycles until a bug 20 
experienced a momentary snag and until capture by a leaf 
were counted. One locomotory cycle refers to a single step 
taken by each of the six legs. The number of steps was used 
rather than time because bugs vary in their walking speed 
and number of pauses on the surface like most insects. Also, 25 
the number of locomotory  cycles directly represents the 
number of opportunities for leg/trichome encounters that can 
lead to piercing. Each bug was only used once. 

(2008); Schulte A J, et al., Acta Biomater. 5, 1848-1854 
(2009); and Koch K, et al., Prag. Mater. Sci. 54, 137-178 
(2009), the disclosure of which is incorporated herein by 
reference.) First, a leaf was placed in a petri dish (100 cm2

area) with its abaxial (undersurface) side facing upward. The 
negative polyvinylsiloxane molding material (President Plus 
Jet Light Body, Affinis Light Body, or Affinis-Fast Light 
Body, Coltene-Whaledent, Inc.) was then poured onto the 
leaf surface and the other side of the petri dish was placed 
on top of the negative molding material with pressures 
ranging from 2 to 10 g/cm2 during polymerization. The leaf 
was then peeled off of the negative mold. The negative mold 
was subsequently filled with a positive molding material and 
left to dry  overnight prior to removal. A variety of polymeric 
positive molding materials, various epoxies and glues with 
different hardening rates and resin:hardener ratios were used 
in order to generate artificial trichomes with mechanical 
properties that span the largely uncharacterized properties of 
natural trichomes (FIGS. 38 to 3E). For example, epoxies 
have Young's moduli (tensile) in the range 0.8-4.2 GPa were 
use, which compare well to plant cell walls (0.1-70 GPa). 
(See, e.g., Wetzel B, et al., Compos Sci Technol 63, 2055-
2067 (2003); Zheng S & Ashcroft I A, J. Adhes. Adhes. 25, 
67-76 (2005); Lilleheden L., Int. J. Adhes. Adhes. 14, 31-37 
(1994); Burst N, et al., J. Adhesion 87, 72-92 (2011); 
Katnam K B ,  et al., Int. J. Adhes. Adhes. 37, 3-10 (2012); 
Vincent J F V., J. Exp. Biol. 202, 3263-3268 (1999); Vincent 
J F V. 1990 Structural Biomaterials Princeton, N.J.: Princ-
eton University Press; Hiller S, et al., J. Texture Stud. 27, Measurement of the Retention of Insects on Leaves after 

Initial Capture 30 559-587 (1996); Gibson L J, et al., 2010 Cellular Materials 
in Nature and Medicine Cambridge, UK: Cambridge Uni-
versity Press.; and Gibson L J, et al., J. R. Soc. Interface 9, 
2749-2766 (2012), the disclosures of which are incorporated 

In order to determine if a bug could move on a surface 
after its initial capture, a time series of static images was 
attained for captured bugs (n=6). After capture by a leaf 
surface, an initial photo was immediately taken document-
ing the location of capture (using the same camera described 35 
above). Subsequent photos were taken after 10, 20, and 30 
minutes. Images were imported into image analysis software 
(Canvas 12, ACD Systems International, USA), stacked, and 
oriented on top of one another, lining up the leaf outlines. A 
circle ( 4 mm diameter) was centered over each bed bug for 40 
each of the four images and the center-to-center distance 
between these circles was calculated. It was estimated that 

herein by reference.) Some exemplary materials include: 
Loctite Heavy Duty Quick Set Epoxy (Henkel Corp.), 
Loctite Epoxy Extra Time (10:4 ratio, 1: 1 ratio) (Henkel 
Corp.), T88 epoxy (Systems Three Resins, Inc.), Titebond 
III Wood Glue (Franklin International), Bob Smith Mid-
Cure 15 min Epoxy (Bob Smith Industries, Inc), and Bob 
Smith Slow-Cure 30 min Epoxy (Bob Smith Industries, Inc). 

Accurate replication of the sharp trichome tips is presum-
ably crucial to facilitate piercing of the bed bug cuticle by 
synthetic trichomes. The sharpness of both natural and 
synthetic trichome tips was measured for several represen-

a displacement of approximately 6 mm of the circle center 
would result if a captured bed bug was able to rotate about 
a single leg impaled at its tip, and therefore a displacement 
of greater than 6 mm would indicate that the bug was able 
to free itself during that time interval. 

45 tative surfaces to the nearest half pixel (-100 nm) in ImageJ 
software using SEM images to evaluate whether the syn-
thetic trichomes were sufficiently sharp. 

Measurement of Trichome Density 
Trichome density (number of trichomes per area of leaf 

surface) was measured on leaves with captured bugs, close 50 
to the points of capture. The lengths of these leaves ranged 
from 69-124 mm (base to tip, not including petiole); 
trichome density was not significantly related to leaf length 
(r2=0.36, n= l O, slope ofregression line is not signif icant at 
the P=0.05 level) and therefore leaflength was not included 55 
in other statistical analyses. LV-SEM images of the leaf 
surfaces were acquired, opened in ImageJ, and all trichomes 

Incorporation of Natural Trichome Tips into Hybrid 
Microfabricated Surfaces 

In addition to generating completely synthetic surfaces, it 
was also possible to create hybrid synthetic surfaces with 
some percentage of natural trichome tips incorporated onto 
synthetic trichome stalks. Synthetic trichome tips can be 
indistinguishable from natural trichome tips in SEM (FIGS. 
3C & 3D) and therefore special analytical techniques are 
required to unambiguously identify whether a tip is natural 
or synthetic. Energy dispersive X-ray spectroscopy (EDS) 
was used to reliably identify natural trichome tips by looking 
for the chemical signature of silicon, which was present in 

on those images counted. An average of 39 trichomes were 
counted over an average area of 0.44 mm2 per leaf (n= l l 
leaves). 

Microfabrication Techniques 
60 large amounts in the natural trichome tips, but not in the 

synthetic polymers used. (See, Dahlin RM, et al., Econ. Bot. 
46, 299-304 (1992); and Perry CC., Insects and the Plant 
Surface (B Juniper, R Southwood, Eds.), pp. 345-346. 

Using kidney bean leaf surfaces as templates, biomimetic 
polymeric surfaces have been constructed for the capture of 
bed bugs (FIG. 3A). Some methods for generating biomi-
metic leaf surfaces are based upon a double molding process 65 
that had been shown to reproduce complex leaf architec-
tures. (See, Koch K, et al., Bioinspir. Biomim. 3, 046002 

London: Edward Arnold Ltd. (1986), the disclosures of 
which are incorporated herein by reference.) EDS mapping 
was used to estimate the percentage of natural tips on the 
microfabricated surfaces. Analysis of hybrids was per-

12 
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formed by corroborating the elemental silicon maps with the 
electron image in the INCA software. Four representative 
areas (each o f  typical size approximately 0.25 mm2, e.g. 
FIG. 3E) per surface were analyzed and their trichome 
counts summed (an average of 93 trichomes were analyzed 5 
per surface). A trichome was deemed "hybrid" i f  there were 
more than 3 pixels with silicon signal that matched with a 
trichome in the electron image. The percent o f  hybrid 
trichomes was calculated from the number o f  hybrid 
trichomes (from the Si images) divided by the total number 10 

oftrichomes (from the electron images). The percentage o f  
natural tips ranged from 0-100% in the 38 micro fabricated 
surfaces that were characterized by EDS mapping. 

Any natural trichome tips incorporated into synthetic 15 
surfaces must have snapped off the natural leaf, and there-
fore broken trichomes should be visible on the natural leaf 
after being used to generate the negative mold. To verify this 
step in the molding process, LV-SEM was used to examine 
the number o f  broken trichomes on a set o f  natural leaves 20 
after molding. This analysis also used four images acquired 

14 
Assessing Damage to Synthetic Surfaces 
One possible reason that surfaces might not capture bed 

bugs could be i f  the hooks on the hybrid surfaces simply 
snapped off without impaling the bed bugs. In order to 
evaluate whether hooks snap off when walked on by bugs, 
three surfaces were examined in SEM both before and after 
extensive exposure to bug contact during walking. These 
samples were attached to SEM stubs, and examined under 
LV-SEM for hook number and integrity on four different 
areas ( each with a surface area of 2 mm2) on each o f  the 
three surfaces. The total area o f  each of the three samples o f
surfaces examined was approximately the same as the S E M
stub: 130 mm2. The approximate surface contact area for all 
six tarsi of a single male adult bed bug is 0.15 mm2. 
Therefore 870 locomotory cycles on average would be 
required for each part o f  a 130 mm2 surface to be stepped on 
once (assuming each 0.15 mm2 step is on a new area). In 
order to conservatively ensure that each part of the surface 
would get stepped on at least once, 10 bugs were placed on 
each surface (sealed inside a vial) and rotated slowly at 8 
revolutions/minute (Barnstead Thermodyne Labquake 
Rotisserie Model C400110) to gently agitate the bugs so that 
they continued to walk over the surface for 18 hours; the 
total area impacted by 60 bug feet with 8 locomotory 

on each leaf at different locations. The trichomes on each 
image were tallied to determine the number o f  sharp, intact 
trichome tips and the number of broken tips on the natural 
leaf surface. The data acquired for the four images were 
surmned and the percentage o f  broken trichomes was cal-
culated for each leaf; results ranged from 0-95% broken tips 
per leaf. Statistical analyses confirmed that there was a 
significant correlation between the percentage o f  broken tips 

25 cycles/minute on average over an 18 hour period would be 
10 times the area of the surface. After the surfaces had been 

on a leaf surface and the percentage of the number of hybrid 30 

trichomes on the fabricated surface made from that particu-
lar leaf (r2= 0.50, n= 30, P<0.0001, linear regression). 

The presence o f  broken natural trichome tips in the 
negative molds after leaf removal was confirmed using S E M  35 
(FIG. 4). The negative polyvinylsiloxane molds were pre-
pared for this analysis by freeze-fracturing to generate a 
crack without surface deformations and mounted at a 90° 

angle with silver paint in order to observe the interface. 
These samples were sputtered (-5 nm Ir) and observed in 40 
HV-SEM at 5 kV. The images show that there are occasion-
ally residual natural tips in the negative mold. 

Generating a Standard for Comparison with Natural 
Leaves 

The number o f  locomotory cycles before a bed bug 45 
exhibited a snag while running on a synthetic surface was 
compared to that measured on natural leaves. However, a 
synthetic surface includes both synthetic and hybrid 
trichomes. I f  only hybrid trichomes (with natural trichome 
tips) are capable of snagging or capturing bed bugs, the 50 
number of expected locomotory cycles to snag or capture 
can be estimated from the proportion o f  trichomes that are 
hybrid. A conservative approach was used in the choice o f  
a standard of 19 locomotory cycles (the 90th percentile for 
the number o f  locomotory cycles that led to capture on 55 
natural leaves, n= l l bugs). For each hybrid surface charac-
terized by EDS (n= 26 out o f  the 38 synthetic surfaces; 12 
had zero hybrids), the number o f  locomotory cycles on a 
hybrid surface that would be expected to result in capture 
90% o f  the time (number oflocomotory cycles= 19/(percent- 60 
age of trichomes that were hybrid)) was clculated. The 
number oflocomotory cycles was counted for a bug running 
on a synthetic surface until a momentary snag was observed 
(up to a maximum o f  200 cycles or the expected number 
based on the hybrid percentage, whichever was smaller). 65 
This made it possible to compare the performance o f  the 
different surfaces in causing difficulties in locomotion. 

thoroughly walked on by bugs as described, the same 
locations on these surfaces were re-evaluated in SEM. 
Comparison of the before and after images confirmed that no 
hooks had been broken and that the bed bugs were not 
damaging the synthetic surfaces. 

Statistical Analyses 
All  analyses were performed using S A S  statistical analy-

sis software (Version 9.2; Cary, N.C.). 

E X A M P L E  1 

Mechanism o f  Bed Bug Capture by Bean Leaves 

In order to evaluate the capture effectiveness o f  natural 
leaf surfaces, bed bugs were placed individually onto kidney 
bean leaves (Phaseolus vulgaris L.) and their movements 
recorded as digital movies. As a bed bug walked on a leaf, 
entanglement o f  any legs by trichomes caused a visible 
change in its walking behavior. It was possible to identify 
two discreet categories o f  entanglement: (1) a momentary 
snag of a leg with the bug able to break away (usually within 
a second), and (2) a more lengthy and irreversible snag in 
which a visibly struggling bug is unable to pull away and is 
therefore considered "captured" by the leaf. It was usually 
impossible to see details o f  the trichome-bed bug interaction 
in situ using light microscopy because the trichomes are 
very small (-10 microns in diameter and 50-100 microns 
high) and were often underneath the tarsi. In order to 
visualize the actions o f  the trichomes that corresponded to 
capture, live captured bed bugs were examined on leaves 
using LV-SEM after recording their capture. Every bug 
captured by a leaf had at least one piercing on one leg by a 
trichome (n= 18 bugs). "Piercing" was defined as a clear and 
unambiguous penetration of the insect cuticle by the 
trichome tip (FIGS. S A  to C); tilting the specimen was 
usually required for such confirmation because piercing 
generally occurred on the underside of the foot. The same 
legs that appeared irreversibly snagged on the leaves in the 
movies of the struggling bugs were confirmed as pierced in 
LV-SEM. Therefore, it was possible to conclude that pierc-
ing is necessary for capture. Occasionally some legs were 
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hooked by the trichomes (FIG. SD), and we inferred that this 
hooking could lead to momentary snags. 

Bed bugs were captured fairly quickly when walking on 
kidney bean leaves. Typically, a bug showed a visible 
momentary snag after only six locomotory cycles ( one 5 
locomotory cycle refers to a single step taken by each of the 
six legs) (median reported, range 0-13 cycles, "O" means 
that the bug displayed snagging behavior immediately on 
introduction to the surface, n= l l bugs), and was captured 
after only nine cycles (median, range 0-39 cycles, n= l l 10 
bugs). This means that a bed bug was usually captured 
within seconds after placement on a leaf. Bed bugs contin-
ued to struggle after being pierced by a trichome, and the 
struggling movements often led to more piercings of the bug 
on the same or additional legs. Additional piercings can 15 
occur because the trichomes are of sufficient density that all 
legs are surrounded by trichomes (FIG. 18) (average 99 
trichomes/mm2, sd=53, n= l 1 leaves; this trichome density is 
comparable to that reported in the literature for P. vulgaris). 
(See, Pillemer E & Tingey W., Science 193, 482-484 (1976), 20 
the disclosure of which is incorporated herein by reference.) 
Examination of all legs of a set of captured bugs in LV-SEM 
showed an average of 3.8 piercings/bug (range 1-7 pierc-
ings/bug, n=6 bugs, 36 legs). The most common location for 
piercing was underneath the pretarsal claws (FIG. SA, c; 25 
61 % of the 23 piercings on the six bugs). The other common 
location on the legs where piercing occurred was in the 
intersegmental membrane between the 1st and 2nd tarsal 
subsegments (FIG. SB; 30% of the 23 piercings on the six 
bugs; tarsal subsegments were counted from proximal to 30 
distal). 

To monitor whether captured bugs were able to free 
themselves from a leaf, photographs were taken of bug 
positions on leaves at ten-minute intervals for thirty minutes 
following capture. The average displacement of a bug thirty 35 
minutes after capture on a bean leaf was only 3.2 mm (range 
1.4-9 .9 mm; n=6 bugs), consistent with rotation in place 
around a pierced leg (-6 mm, see above). Captured bugs 
struggled, but were only rarely able to generate enough force 
to pull free of a piercing trichome (by breaking the trichome 40 
or ripping the insect cuticle), and usually immediately got 
recaptured on the leaf. If a bug was able to break a trichome, 
there should be evidence on the undersurface of the leg. To 
measure this some bugs were forcibly detached from leaves 
by pulling straight up with forceps, and immediately exam- 45 
ined them upside-down in LV-SEM to look for attached 
broken trichomes or physical damage to the underside 
(ventral surface) of the bug legs, which would provide such 
evidence. In 8 out of 9 cases, it was possible to identify at 
least one broken trichome still attached to the bug (FIG. 6), 50 
and in the remaining case, there was evidence of damage 
(leaking hemolymph in the pierced location). Therefore it 
was possible to confirm earlier piercings from damage on 
the undersides of bug tarsi. Bugs that had been momentarily 
snagged, but not captured by leaves, never exhibited any 55 
evidence of piercing when examined using LV-SEM; pre-
sumably their legs had only been hooked. 

EXAMPLE 2 

16 
orientation. The hardest challenges in the microfabrication 
of the high aspect ratio trichomes on a replicate bean leaf 
surface are to accurately reproduce the sharp tips and the 
recurved shapes. 

Synthetic surfaces were generated with indistinguishable 
trichome geometry and hook point sharpness seen in natural 
leaves (FIGS. 3A to 3E). The kidney bean trichomes had an 
average tip sharpness of 220±35 nm (mean±! standard 
deviation, n= 16 trichomes from 16 different leaves) and the 
synthetic replicas had an average tip sharpness of 230±50 
nm (mean±! standard deviation, n=27 from 27 different 
synthetic surfaces); tip sharpness is not significantly differ-
ent in a one-way ANOVA (P=0.49). Therefore the method is 
accurately duplicating the geometry of the microstructures 
on the natural surfaces. 

Serendipitously it was discovered that natural trichome 
tips would sometimes be retained in the negative mold 
material (FIG. 4) and become incorporated into hybrid 
surfaces (FIG. 7). This allowed us to generate surfaces that 
had trichomes with natural piercing hook tips attached to 
synthetic stalks (hybrid trichomes). The natural tips were 
usually indistinguishable in appearance from synthetic tips 
when viewed in SEM (FIG. 78). Therefore to reliably 
identify natural trichome tips, energy dispersive X-ray spec-
troscopy (EDS) was used to look for silicon, which was 
present in large amounts in the natural trichome tips (FIGS. 
78 & 7C), but not in the synthetic polymers used (FIG. 7b). 
EDS mapping was used to estimate the percentage of natural 
tips on the microfabricated surfaces (FIG. 7D). The percent-
age of natural tips ranged from 0-100% in the 38 micro fab-
ricated surfaces that were characterized by EDS mapping. 

If the hybrid trichomes (with natural tips) are able to hook 
or pierce the bed bugs, but the completely synthetic 
trichomes are not, synthetic surfaces with a larger percent-
age of hybrid trichomes should interfere more with bed bug 
locomotion than synthetic surfaces with fewer hybrid 
trichomes. Therefore the number of locomotory cycles 
expected to generate a snag or capture could be predicted by 
correcting a conservative standard (19 locomotory cycles, 
the 90th percentile for capture on natural leaves) for the 
percentage of hybrid trichomes estimated using EDS. Only 
4 out of 26 bugs showed a momentary snag without capture 
during the number of locomotory cycles that would be 
expected to result in capture 90% of the time for their 
particular surface. 

If the bugs were not captured by synthetic surfaces 
because they were able to break the synthetic or hybrid 
trichomes, broken trichomes should be evident on the micro-
fabricated surfaces after bugs ran on them. In order to 
evaluate whether trichomes on microfabricated surfaces are 
snapped off by the bugs, SEM images of three surfaces were 
compared both before and after ten bugs were confined on 
each surface for 18 hours (the surfaces were rotated con-
stantly to keep the bugs moving). Not a single broken 
trichome was observed out of the several hundred trichomes 
viewed, suggesting that neither synthetic nor hybrid 
trichomes are breaking when the bugs are walking on them. 

In order to further validate the fidelity of the proposed 
replication process, different bean leafs were reproduced and 

Microfabrication and Characterization of 
Biomimetic Surfaces 

The bean leaves captured bed bugs so quickly and effec-
tively that a logical starting place for microfabrication of a 
capturing surface for bed bug control is to faithfully repro-
duce the leaftrichomes with the relevant surface density and 

60 both the negative and the positive molds were examined 
using standard high vacuum scanning electron microscopy 
(SEM) techniques. The negative mold was freeze-fractured, 
mounted to view the cross section, and then sputter coated 
with gold. The resulting SEM is shown in FIGS. SA to SC, 

65 which clearly shows trichome microstructures whose geom-
etry has remained intact. Likewise, FIGS. 9A to 9C shows 
representative images of the positive leaf replicas. A low 
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magnification image of epoxy hooks replicating Phaseolus 
coccineus (Scarlet Runner bean) is shown in FIG. 98. (In 
this image the larger veins are visible along with the 
trichomes on the surface.) FIG. 9C is a closer view of a 
biomimetic vein with sharp replicated hooks created from a 
Phaseolus vulgaris (kidney bean) leaf. The higher magnifi-
cation image shows one of the epoxy sha r p  hooks replicating 
Phaseolus coccineus (Scarlet Runner bean). Various epoxies 
and glues with different hardening rates and resin:hardener 
ratios were tried. In this embodiment, the kidney bean leaf 10 

replica is made from TiteBond III, a type of wood glue. 
These images clearly demonstrate that the double molding 
process described in FIG. 3 can indeed generate biomimetic 
surfaces containing hooked trichomes with precision. 
Conclusion 

15 

In this disclosure, the mechanism of bed bug capture by 
the microstructures of plant leaf surfaces, including three 
species of bean plants, were characterized and then 
employed in the design and fabrication ofbiomimetic insect 20 
capture surfaces for insect capture. Specifically, four differ-
ent plant species have been examined, including: Phaseolus 
vulgaris, Phaseolus coccineus, Phaseolus limensis, andPas-
siflora morifolia. All four plant species have similar surface 
texture consisting of hooked trichomes, which can impale or 25 
hook bed bug tarsi. The interaction between the plant 
microstructure and bed bug tarsi has been documented by 
both videography and low vacuum scanning electron 
microscopy (LV-SEM). Furthermore, the location of 
trichome piercing on bed bug legs has been determined. 30 

One way to duplicate the mechanical properties of the 
natural surface is to match both the geometry and the 
material properties of the synthetic surface to the natural 
leaf. Using leaf surfaces as models, biomimetic polymeric 
surfaces for the capture of insects, including bed bugs have 35 
been formed and tested. In addition, a process for construct-
ing these insect capture surfaces. In some embodiments, the 
process is two-fold: 1) a negative mold of the leaf is made, 
and 2) a second material is then poured onto the negative 
mold, which generates a positive leaf replica. This method 40 
is further shown to faithfully reproduce the functional 
aspects of the plant trichomes. The molding process gener-
ated microfabricated trichomes that were indistinguishable 
from the natural trichomes, with the proper aspect ratio and 
sharpness of tips, arranged with the same density, orientation 45 
and height seen on the natural leaves. 

Capturing bed bugs ( or other insects) with microfabri-
cated surfaces is a physical rather than a chemical approach, 
and therefore leaves no chemical residue, and does not 
expose people to pesticide treatments. This is a sustainable 50 
"g reen technology." By incorporating insect-trapping micro-
fabrications into substrates ( carpet, rugs, drapery, dust 
ruffles, suitcases, etc.) the invention also would enable 
monitoring and prevention of future infestations in homes, 
hotels, dormitories, schools, offices, and other dwellings. 55 
This device can then be used in bed bug abatement to 
capture bed bugs for detection or control. For detection, the 
insect-entrapping microfabrications could be incorporated 
into panels, strips, ropes, etc., and placed in strategic areas 
to alert building occupants, property managers, etc. of the 60 
presence of infestation. As a control device it could also be 
incorporated into the manufacture of carpet, rugs, drapes, 
dust ruffles, bedding, upholstery, and other furnishings for 
both prevention and remediation of infestations. No such 
device currently exists for bed bug abatement. A device that 65 
captures bed bugs by surface microfabrication has great 
potential in commercial applications as bed bugs are an 

18 
escalating international problem in all manner of buildings, 
and therefore it is expected that this device will have 
widespread use. 
Doctrine Of Equivalents 

Those skilled in the art will appreciate that the foregoing 
examples and descriptions of various preferred embodi-
ments of the present invention are merely illustrative of the 
invention as a whole, and that variations in the steps and 
various components of the present invention may be made 
within the spirit and scope of the invention. Accordingly, the 
present invention is not limited to the specific embodiments 
described herein but, rather, is defined by the scope of the 
appended claims. 

What is claimed is: 
1. A micro fabricated insect capturing surface comprising:
a substrate defining a plane; 
a plurality of insect capture surface microstructures each

formed from a flexible elongated member, the plurality 
of surface microstructures being disposed on the sub-
strate with a variable orientation to the plane of the 
substrate and at a density sufficient such that multiple 
insect capture surface microstructures are capable of 
simultaneously interacting with an insect disposed 
thereon; 

wherein at least some of the surface microstructures have 
a recurved body capable of entangling the insect, and 
wherein at least some of the surface microstructures 
include a piercing element being sufficiently rigid and 
sharp to pierce the insect body; and 

wherein the surface microstructures are formed from a 
material having a breaking stress sufficiently large to 
avoid breakage during interaction with the insect. 

2. The microfabricated surface of claim 1, wherein each
of the plurality of insect capture surface microstructures has 
a recurved body and wherein at least one piercing element 
is incorporated onto each of said insect capture surface 
microstructures. 

3. The microfabricated surface of claim 2, wherein the
piercing element is disposed at the terminating end of the 
elongated member. 

4. The microfabricated surface of claim 2, wherein the
surface microstructures include at least two piercing ele-
ments, and wherein the piercing elements are disposed along 
the body of elongated member. 

5. The microfabricated surface of claim 1, wherein the
recurved body is formed in a shape selected from the group 
consisting of a hook, curve, loop or hoop. 

6. The microfabricated surface of claim 1, wherein the
piercing element is selected from the group consisting of a 
sharp point, hook or barb. 

7. The microfabricated surface of claim 1, wherein the
plurality of surface microstructures are dimensioned such 
that engage the underside of the insect. 

8. The microfabricated surface of claim 1, wherein the
piercing element has a diameter of about 100 to 1000 nm. 

9. The microfabricated surface of claim 1, wherein the
elongated member has a Young's Modulus of from 1 to 23 
GPa. 

10. The microfabricated surface of claim 1, wherein the
surface microstructures are modeled on a plant trichome. 

11. The microfabricated surface of claim 10, wherein the
plant trichome is modeled on one plant selected from the 
group Phaseolus coccineus, Phaseolus vulgaris, Phaseolus 
limensis, Passiflora morifolia, Cynnoglossum oiftcinale and 
Caiophora coronaria. 



US 9,930,877 B2 
19 

12. The microfabricated surface of claim 1, wherein the 
surface microstructures are disposed on the substrate in a 
density of between 20 to 300 surface microstructures per 
square millimeter. 

13. The microfabricated surface of claim 1, wherein the 
surface microstructures are formed from a material selected 
from the group consisting of polymeric materials, natural 
fibers, metals, oxides and nano- or micro-engineered struc-
tures. 

14. The microfabricated surface of claim 1, wherein the 10 

elongated member is formed of a hollow body. 
15. A method of manufacturing a microfabricated insect 

capturing surface comprising: 
providing a substrate defining a plane; 
disposing a plurality of insect capture surface microstruc- 15 

tures thereon, each formed from a flexible elongated 
member, the plurality of surface microstructures being 
disposed on the substrate with a variable orientation to 
the plane of the substrate and at a density sufficient such 
that multiple insect capture surface microstructures are 20 

capable of simultaneously interacting with an insect 
disposed thereon; 

wherein at least some of the surface microstructures have 
a recurved body capable of entangling the insect, and 

20 
wherein at least some of the surface microstructures 
include a piercing element being sufficiently rigid and 
sharp to pierce the insect body; and 

wherein the surface microstructures are formed from a 
material having a breaking stress sufficiently large to 
avoid breakage during interaction with the insect. 

16. The method of claim 15, wherein each of the plurality 
of insect capture surface microstructures has a recurved 
body and wherein at least one piercing element is incorpo-
rated onto each of said insect capture surface microstruc-
tures. 

17. The method of claim 16, wherein the piercing element 
is disposed at the terminating end of the elongated member. 

18. The method of claim 16, wherein the surface micro-
structures include at least two piercing elements, and 
wherein the piercing elements are disposed along the body 
of elongated member. 

19. The method of claim 15, wherein the recurved body 
is formed in a shape selected from the group consisting of a 
hook, curve, loop or hoop. 

20. The method of claim 15, wherein the piercing element 
is selected from the group consisting of a sharp point, hook 
or barb. 

* * * * *
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