629 research outputs found

    Latency reversal and viral clearance to cure HIV-1

    Get PDF
    Research toward a cure for human immunodeficiency virus type 1 (HIV-1) infection has joined prevention and treatment efforts in the global public health agenda. A major approach to HIV eradication envisions antiretroviral suppression, paired with targeted therapies to enforce the expression of viral antigen from quiescent HIV-1 genomes, and immunotherapies to clear latent infection. These strategies are targeted to lead to viral eradicationā€”a cure for AIDS. Paired testing of latency reversal and clearance strategies has begun, but additional obstacles to HIV eradication may emerge. Nevertheless, there is reason for optimism that advances in long-acting antiretroviral therapy and HIV prevention strategies will contribute to efforts in HIV cure research and that the implementation of these efforts will synergize to markedly blunt the effect of the HIV pandemic on society

    Epidemiological Impact of Tenofovir Gel on the HIV Epidemic in South Africa

    Get PDF
    BACKGROUND: Tenofovir gel, an antiretroviral-based vaginal microbicide, reduced HIV acquisition by 39% in women in a recent randomized controlled clinical trial in South Africa. METHODS: To inform policy, we used a dynamical model of HIV transmission, calibrated to the epidemic in South Africa, to determine the population-level impact of this microbicide on HIV incidence, prevalence, and deaths and to evaluate its cost-effectiveness. RESULTS: If women use tenofovir gel in 80% or more of sexual encounters (high coverage), it could avert 2.33 (0.12 to 4.63) million new infections and save 1.30 (0.07 to 2.42) million lives and if used in 25% of sexual encounters (low coverage), it could avert 0.50 (0.04 to 0.77) million new infections and save 0.29 (0.02 to 0.44) million deaths, over the next 20 years. At US 0.50perapplication,thecostperinfectionavertedatlowcoverageisUS0.50 per application, the cost per infection averted at low coverage is US 2392 (US 562toUS562 to US 4222) and the cost per disability-adjusted life year saved is US 104(US104 (US 27 to US $181); at high coverage the costs are about 30% less. CONCLUSIONS: Over 20 years, the use of tenofovir gel in South Africa could avert up to 2 million new infections and 1 million AIDS deaths. Even with low rates of gel use, it is highly cost-effective and compares favorably with other control methods. This female-controlled prevention method could have a significant impact on the epidemic of HIV in South Africa. Programs should aim to achieve gel use in more than 25% of sexual encounters to significantly alter the course of the epidemic

    Envelope-specific antibodies and antibody-derived molecules for treating and curing HIV infection

    Get PDF
    HIV-1 is a retrovirus that integrates into host chromatin and can remain transcriptionally quiescent in a pool of immune cells. This characteristic enables HIV-1 to evade both host immune responses and antiretroviral drugs, leading to persistent infection. Upon reactivation of proviral gene expression, HIV-1 envelope (HIV-1 Env) glycoproteins are expressed on the cell surface, transforming latently infected cells into targets for HIV-1 Env-specific monoclonal antibodies (mAbs), which can engage immune effector cells to kill productively infected CD4+ T cells and thus limit the spread of progeny virus. Recent innovations in antibody engineering have resulted in novel immunotherapeutics such as bispecific dual-affinity re-targeting (DART) molecules and other bi- and trispecific antibody designs that can recognize HIV-1 Env and recruit cytotoxic effector cells to kill CD4+ T cells latently infected with HIVā€‘1. Here, we review these immunotherapies, which are designed with the goal of curing HIV-1 infection

    Methods development for Analysis of Partially Deglycosylated Proteins and Application to an HIV Envelope Protein Vaccine Candidate

    Get PDF
    The work presented herein describes the first comprehensive analysis of a partially deglycosylated HIV vaccine candidate envelope protein (Env). The Env, JRFL gp140 Ī”CF, with 27 potential glycosylation sites, was partially deglycosylated with PNGase F as part of a strategy to generate a more immunogenic HIV vaccine, and the resulting proteinā€™s glycosylation was characterized in a unique workflow using two different glycosidases, Endo H and Endo F3. This unique analysis protocol provided for coverage on 26 of the 27 glycosylation sites, and the data showed that the biochemical treatment with PNGase F resulted in a highly heterogeneous glycoprotein product that had been partially deglycosylated at most of the glycosylation sites. The protocols described in this work could be useful for characterizing the glycosylation site occupancy of other native or biochemically deglycosylated proteins

    Characterization of Host-Cell Line Specific Glycosylation Profiles of Early Transmitted/Founder HIV-1 gp120 Envelope Proteins

    Get PDF
    Glycosylation plays an essential role in regulating protein function by modulating biological, structural, and therapeutic properties. However, due to its inherent heterogeneity and diversity, the comprehensive analysis of protein glycosylation remains a challenge. As part of our continuing effort in the analysis of glycosylation profiles of recombinant HIV-1 envelope-based immunogens, we evaluated and compared the host-cell specific glycosylation pattern of recombinant HIV-1 surface glycoprotein, gp120, derived from clade C transmitted/founder virus 1086.C expressed in Chinese hamster ovary (CHO) and human embryonic kidney containing T antigen (293T) cell lines. We used an integrated glycopeptide-based mass mapping workflow that includes a partial deglycosylation step described in our previous study1 with the inclusion of the fragmentation technique, electron transfer dissociation (ETD), to complement collision induced dissociation (CID). The inclusion of ETD facilitated the analysis by providing additional validation for glycopeptide identification and expanding the identified glycopeptides to include coverage of O-linked glycosylation. The site-specific glycosylation analysis shows that the transmitted/founder 1086.C gp120 expressed in CHO and 293T displayed distinct similarities and differences. For N-linked glycosylation, two sites (N386 and N392), in the V4 region were populated with high mannose glycans in the CHO cell-derived 1086.C gp120, while these sites had a mixture of high mannose and processed glycans in the 293T cell-derived 1086.C gp120. Compositional analysis of O-linked glycans revealed that 293T cell-derived 1086.C gp120 consisted of cores 1, 2, and 4 type O-linked glycans while CHO cell-derived 1086.C exclusively consisted of core 1 type O-linked glycans. Overall, glycosylation site occupancy of the CHO and 293T cell-derived 1086.C gp120 show high degree of similarity except for one site at N88 in the C1 region. This site was partially occupied in 293T-gp120 but fully occupied in CHO-gp120. Site-specific glycopeptide analysis of transmitted/founder 1086.C gp120 expressed in CHO cells revealed the presence of phosphorylated glycans while 293T cell produced 1086.C gp120 glycans were not phosphorylated. While the influence of phosphorylated glycans on immunogenicity is unclear, distinguishing host-cell specific variations in glycosylation profiles provides insights into the similarity (or difference) in recombinant vaccine products. While these differences had minimal effect on envelope antigenicity, they may be important in considering immunogenicity and functional capacities of recombinant envelope proteins produced in different expression systems

    Expression of CD44 molecules and CD44 ligands during human thymic fetal development: expression of CD44 isoforms is developmentally regulated

    Get PDF
    It has recently been recognized that CD44 comprises a large family of alternatively spliced forms.In the thymus, CD44 has been postulated to play an important role in immature T cell migration and maturation. In this paper, we have studied the expression of CD44 molecules and two CD44 ligands, hyaluronan (HA) and fibronectin (FN), during human thymic fetal development. We found that mAbs against all CD44 isoforms (A3D8 or A1G3) reacted with both thymic epithelial (TE) cells and thymocytes beginning at the time of initial colonization of the human thymus by hematopoietic stem cells at 8.2 weeks of fetal gestation. However, mAbs specific for splice variants of CD44 containing membrane-proximal inserts (11.24, 11.10 and 11.9) reacted only with terminally differentiated TE cells in and around Hassall's bodies beginning at 16-19 weeks of fetal gestation. Studies of differentiated versus undifferentiated TE cells in vitro confirmed the selective expression of CD44 variant isoforms on terminally differentiated TE cells. Expression of HA and FN was determined by fluorescence microscopy using either biotlnylated-HA binding protein or an anti-FN mAb. We found that whereas FN was present throughout the human fetal thymus beginning at 8.2 weeks, HA was not present until 16 weeks of gestational age. These data demonstrate the differential expression of standard versus variant CD44 isoforms during thymic ontogeny and implicate CD44 interactions with ligands other than HA as important in the earlier stages of humanthymus developmen

    Glycosylation Site-Specific Analysis of Clade C HIV-1 Envelope Proteins

    Get PDF
    The extensive glycosylation of HIV-1 envelope proteins (Env), gp120/gp41, is known to play an important role in evasion of host immune response by masking key neutralization epitopes and presenting the Env glycosylation as ā€œselfā€ to the host immune system. The Env glycosylation is mostly conserved but continues to evolve to modulate viral infectivity. Thus, profiling Env glycosylation and distinguishing interclade and intraclade glycosylation variations are necessary components in unraveling the effects of glycosylation on Envā€™s immunogenicity. Here, we describe a mass spectrometry-based approach to characterize the glycosylation profiles of two rVV-expressed clade C Envs by identifying the glycan motifs on each glycosylation site and determining the degree of glycosylation site occupancy. One Env is a wild-type Env, while the other is a synthetic ā€œconsensusā€ sequence (C.CON). The observed differences in the glycosylation profiles between the two clade C Envs show that C.CON has more unutilized sites and high levels of high mannose glycans; these features mimic the glycosylation profile of a Group M consensus immunogen, CONS. Our results also reveal a clade-specific glycosylation pattern. Discerning interclade and intraclade glycosylation variations could provide valuable information in understanding the molecular differences among the different HIV-1 clades and in designing new Env-based immunogens

    Acute HIV-1 Infection

    Get PDF
    In 2009, the United Nations estimated that 33.2 million people worldwide were living with human immunodeficiency virus type 1 (HIV-1) infection and that 2.6 million people had been newly infected.1 The need for effective HIV-1 prevention has never been greater. In this review, we address recent critical advances in our understanding of HIV-1 transmission and acute HIV-1 infection. Fourth-generation HIV-1 testing, now available worldwide,2,3 will allow the diagnosis of infection in many patients and may lead to new treatments and opportunities for prevention

    P20-08. Glycosylation: an important factor in Env diversity

    Get PDF
    Supported by a CAVD Grant from the Bill and Melinda Gates Foundation
    • ā€¦
    corecore