1,441 research outputs found

    Cardiac and Pulmonary Dosimetric Parameters in Lung Cancer Patients Undergoing Post-Operative Radiation Therapy in the Real-World Setting

    Get PDF
    Purpose/Objective(s): The recently published Lung ART trial reported increased rates of cardiac and pulmonary toxicity in the post-operative radiation therapy arm. It remains unknown whether the dosimetric parameters reported in Lung ART are representative of real-world practice. The purpose of this study is to examine heart and lung dose exposure in patients receiving post-operative radiation therapy for non-small cell lung cancer (NSCLC) across a statewide consortium. Materials/Methods: From 2012 to 2020, 377 patients at 27 academic and community centers within the Michigan Radiation Oncology Quality Consortium (MROQC) underwent surgical resection followed by post-operative radiation therapy for non-metastatic NSCLC. Demographic and dosimetric data were prospectively collected for these patients. Rates of 3D-CRT and IMRT use were analyzed. Mean heart dose (MHD), heart V5, heart V35, mean lung dose (MLD), lung V20, target volume and minimum dose to 95% PTV were calculated for these patients and the reported dosimetric parameters were stratified by treatment modality. Results: 51% of patients in this cohort had N2 disease at the time of surgery, 18% had a positive margin. 65.8% of patients were treated with IMRT compared to 32.1% treated with 3D-CRT. Average MHD for all patients was 10.3 Gy, mean Heart V5 was 40.3% and mean heart V35 was 12.6%. Average MLD was 11.2 Gy and mean lung V20 was 18.9%. These dosimetric parameters did not significantly differ based on treatment modality, with MHD and MLD 9.9 Gy and 10.1 Gy, respectively, for patients treated with 3D-CRT compared to 10.6 Gy and 11.8 Gy for patients treated with IMRT. Conclusion: Cardiac and lung dosimetric parameters for patients receiving post-operative radiation therapy for NSCLC are similar to the dosimetric characteristics reported in Lung ART. The mean heart and mean lung doses observed are slightly lower (MHD 10.3 Gy, MLD 11.2 Gy) compared to Lung ART (MHD 13 Gy, MLD 13 Gy), possibly owing to increased use of IMRT. These data support application of Lung ART\u27s findings outside of the clinical trial setting

    The Rat Genome Database curation tool suite: a set of optimized software tools enabling efficient acquisition, organization, and presentation of biological data

    Get PDF
    The Rat Genome Database (RGD) is the premier repository of rat genomic and genetic data and currently houses over 40 000 rat gene records as well as human and mouse orthologs, 1771 rat and 1911 human quantitative trait loci (QTLs) and 2209 rat strains. Biological information curated for these data objects includes disease associations, phenotypes, pathways, molecular functions, biological processes and cellular components. A suite of tools has been developed to aid curators in acquiring and validating data objects, assigning nomenclature, attaching biological information to objects and making connections among data types. The software used to assign nomenclature, to create and edit objects and to make annotations to the data objects has been specifically designed to make the curation process as fast and efficient as possible. The user interfaces have been adapted to the work routines of the curators, creating a suite of tools that is intuitive and powerful

    Henipavirus Neutralising Antibodies in an Isolated Island Population of African Fruit Bats

    Get PDF
    Isolated islands provide valuable opportunities to study the persistence of viruses in wildlife populations, including population size thresholds such as the critical community size. The straw-coloured fruit bat, Eidolon helvum, has been identified as a reservoir for henipaviruses (serological evidence) and Lagos bat virus (LBV; virus isolation and serological evidence) in continental Africa. Here, we sampled from a remote population of E. helvum annobonensis fruit bats on Annobón island in the Gulf of Guinea to investigate whether antibodies to these viruses also exist in this isolated subspecies. Henipavirus serological analyses (Luminex multiplexed binding and inhibition assays, virus neutralisation tests and western blots) and lyssavirus serological analyses (LBV: modified Fluorescent Antibody Virus Neutralisation test, LBV and Mokola virus: lentivirus pseudovirus neutralisation assay) were undertaken on 73 and 70 samples respectively. Given the isolation of fruit bats on Annobón and their lack of connectivity with other populations, it was expected that the population size on the island would be too small to allow persistence of viruses that are thought to cause acute and immunising infections. However, the presence of antibodies against henipaviruses was detected using the Luminex binding assay and confirmed using alternative assays. Neutralising antibodies to LBV were detected in one bat using both assays. We demonstrate clear evidence for exposure of multiple individuals to henipaviruses in this remote population of E. helvum annobonensis fruit bats on Annobón island. The situation is less clear for LBV. Seroprevalences to henipaviruses and LBV in Annobón are notably different to those in E. helvum in continental locations studied using the same sampling techniques and assays. Whilst cross-sectional serological studies in wildlife populations cannot provide details on viral dynamics within populations, valuable information on the presence or absence of viruses may be obtained and utilised for informing future studies

    The Rat Genome Database Pathway Portal

    Get PDF
    The set of interacting molecules collectively referred to as a pathway or network represents a fundamental structural unit, the building block of the larger, highly integrated networks of biological systems. The scientific community's interest in understanding the fine details of how pathways work, communicate with each other and synergize, and how alterations in one or several pathways may converge into a disease phenotype, places heightened demands on pathway data and information providers. To meet such demands, the Rat Genome Database [(RGD) http://rgd.mcw.edu] has adopted a multitiered approach to pathway data acquisition and presentation. Resources and tools are continuously added or expanded to offer more comprehensive pathway data sets as well as enhanced pathway data manipulation, exploration and visualization capabilities. At RGD, users can easily identify genes in pathways, see how pathways relate to each other and visualize pathways in a dynamic and integrated manner. They can access these and other components from several entry points and effortlessly navigate between them and they can download the data of interest. The Pathway Portal resources at RGD are presented, and future directions are discussed

    Hyperfeatures - multilevel local coding for visual recognition

    Get PDF
    International audienceHistograms of local appearance descriptors are a popular representation for visual recognition. They are highly discriminant and have good resistance to local occlusions and to geometric and photometric variations, but they are not able to exploit spatial co-occurrence statistics at scales larger than their local input patches. We present a new multilevel visual representation, ‘hyperfeatures', that is designed to remedy this. The starting point is the familiar notion that to detect object parts, in practice it often suffices to detect co-occurrences of more local object fragments – a process that can be formalized as comparison (e.g. vector quantization) of image patches against a codebook of known fragments, followed by local aggregation of the resulting codebook membership vectors to detect co-occurrences. This process converts local collections of image descriptor vectors into somewhat less local histogram vectors – higher-level but spatially coarser descriptors. We observe that as the output is again a local descriptor vector, the process can be iterated, and that doing so captures and codes ever larger assemblies of object parts and increasingly abstract or ‘semantic' image properties. We formulate the hyperfeatures model and study its performance under several different image coding methods including clustering based Vector Quantization, Gaussian Mixtures, and combinations of these with Latent Dirichlet Allocation. We find that the resulting high-level features provide improved performance in several object image and texture image classification tasks

    Developing One Health surveillance systems.

    Get PDF
    Abstract: The health of humans, domestic and wild animals, plants, and the environment are inter-dependent. Global anthropogenic change is a key driver of disease emergence and spread and leads to biodiversity loss and ecosystem function degradation, which are themselves drivers of disease emergence. Pathogen spill-over events and subsequent disease outbreaks, including pandemics, in humans, animals and plants may arise when factors driving disease emergence and spread converge. One Health is an integrated approach that aims to sustainably balance and optimize human, animal and ecosystem health. Conventional disease surveillance has been siloed by sectors, with separate systems addressing the health of humans, domestic animals, cultivated plants, wildlife and the environment. One Health surveillance should include integrated surveillance for known and unknown pathogens, but combined with this more traditional disease-based surveillance, it also must include surveillance of drivers of disease emergence to improve prevention and mitigation of spill-over events. Here, we outline such an approach, including the characteristics and components required to overcome barriers and to optimize an integrated One Health surveillance system
    corecore