25 research outputs found

    Separating chemotherapy-related developmental neurotoxicity from cytotoxicity in monolayer and neurosphere cultures of human fetal brain cells

    Get PDF
    Chemotherapy-induced neurotoxicity can reduce the quality of life of patients by affecting their intelligence, senses and mobility. Ten percent of safety-related late-stage clinical failures are due to neurological side effects. Animal models are poor in predicting human neurotoxicity due to interspecies differences and most in vitro assays cannot distinguish neurotoxicity from general cytotoxicity for chemotherapeutics. We developed in vitro assays capable of quantifying the paediatric neurotoxic potential for cytotoxic drugs. Mixed cultures of human fetal brain cells were differentiated in monolayers and as 3D-neurospheres in the presence of non-neurotoxic chemotherapeutics (etoposide, teniposide) or neurotoxicants (methylmercury). The cytotoxic potency towards dividing progenitors versus differentiated neurons and astrocytes was compared using: (1) immunohistochemistry staining and cell counts in monolayers; (2) through quantitative Western blots in neurospheres; and (3) neurosphere migration assays. Etoposide and teniposide, were 5–10 times less toxic to differentiated neurons compared to the mix of all cells in monolayer cultures. In contrast, the neurotoxicant methylmercury did not exhibit selectivity and killed all cells with the same potency. In 3D neurospheres, etoposide and teniposide were 24 to 10 times less active against neurons compared to all cells. These assays can be used prioritise drugs for local drug delivery to brain tumours

    Medium- and short-chain dehydrogenase/reductase gene and protein families: The MDR superfamily

    Get PDF
    The MDR superfamily with ~350-residue subunits contains the classical liver alcohol dehydrogenase (ADH), quinone reductase, leukotriene B4 dehydrogenase and many more forms. ADH is a dimeric zinc metalloprotein and occurs as five different classes in humans, resulting from gene duplications during vertebrate evolution, the first one traced to ~500 MYA (million years ago) from an ancestral formaldehyde dehydrogenase line. Like many duplications at that time, it correlates with enzymogenesis of new activities, contributing to conditions for emergence of vertebrate land life from osseous fish. The speed of changes correlates with function, as do differential evolutionary patterns in separate segments. Subsequent recognitions now define at least 40 human MDR members in the Uniprot database (corresponding to 25 genes when excluding close homologues), and in all species at least 10888 entries. Overall, variability is large, but like for many dehydrogenases, subdivided into constant and variable forms, corresponding to household and emerging enzyme activities, respectively. This review covers basic facts and describes eight large MDR families and nine smaller families. Combined, they have specific substrates in metabolic pathways, some with wide substrate specificity, and several with little known functions

    Sustained ERK phosphorylation is necessary but not sufficient for MMP-9 regulation in endothelial cells: involvement of Ras-dependent and -independent pathways

    No full text
    Endothelial expression of matrix metalloproteinase-9 (MMP-9), which degrades native type IV collagen, was implicated as a prerequisite for angiogenesis. Therefore, the aim of this study was to determine signaling requirements that regulate MMP-9 expression in endothelial cells. Both, primary and permanent human umbilical vein endothelial cells (HUVEC and ECV304, respectively) were stimulated with phorbol 12-myristate 13-acetate (PMA) and the cytokine tumor necrosis factor-(alpha) (TNF(alpha)) to induce MMP-9 expression. While both cell types responded to PMA at the protein, mRNA and promoter level by induction of MMP-9, TNF(alpha) caused this response only in ECV304. Inhibitors specific for mitogen-activated protein/ERK kinase 1/2 (MEK1/2), protein kinase C (PKC), and Ras and co-transfections of wild-type and mutant Raf were used to elucidate the signaling cascades involved. Thus, we could show that the Raf/MEK/ERK cascade is mainly responsible for MMP-9 induction in endothelial cells and that this cascade is regulated independently of PKC and Ras subsequent to TNF(alpha) stimulation and in a PKC-dependent manner as a result of PMA treatment. In addition, PMA triggers a Ras-dependent signal transduction pathway bypassing the phosphorylation of ERK. Finally, we provide evidence that sustained phosphorylation of ERK1/2 is necessary but not sufficient for expression of MMP-9

    Dephosphorylation of the small heat shock protein HSP 25 by calcium/calmodulin-dependent (type 2B) protein phosphatase

    No full text

    Muscle-type creatine kinase interacts with central domains of the M-band proteins myomesin and M-protein

    No full text
    Muscle-type creatine kinase (MM-CK) is a member of the CK isoenzyme family with key functions in cellular energetics. MM-CK interacts in an isoform-specific manner with the M-band of sarcomeric muscle, where it serves as an efficient intramyofibrillar ATP-regenerating system for the actin-activated myosin ATPase located nearby on both sides of the M-band. Four MM-CK-specific and highly conserved lysine residues are thought to be responsible for the interaction of MM-CK with the M-band. A yeast two-hybrid screen led to the identification of MM-CK as a binding partner of a central portion of myomesin (My7-8). An interaction was observed with domains six to eight of the closely related M-protein but not with several other Ig-like domains, including an M-band domain, of titin. The observed interactions were corroborated and characterised in detail by surface plasmon resonance spectroscopy (BiaCore). In both cases, they were CK isoform-specific and the MM-CK-specific lysine residues (K8. K24, K104 and K115) are involved in this interaction. At pH 6.8, the dissociation constants for the myomesin/MM-CK and the M-protein/MM-CK binding were in the range of 50-100 nM and around 1 microM, respectively. The binding showed pronounced pH-dependence and indicates a dynamic association/dissociation behaviour, which most likely depends on the energy state of the muscle. Our data propose a simple model for the regulation of this dynamic interaction
    corecore