104 research outputs found

    Distributed intelligent control and management (DICAM) applications and support for semi-automated development

    Get PDF
    We have recently begun a 4-year effort to develop a new technology foundation and associated methodology for the rapid development of high-performance intelligent controllers. Our objective in this work is to enable system developers to create effective real-time systems for control of multiple, coordinated entities in much less time than is currently required. Our technical strategy for achieving this objective is like that in other domain-specific software efforts: analyze the domain and task underlying effective performance, construct parametric or model-based generic components and overall solutions to the task, and provide excellent means for specifying, selecting, tailoring or automatically generating the solution elements particularly appropriate for the problem at hand. In this paper, we first present our specific domain focus, briefly describe the methodology and environment we are developing to provide a more regular approach to software development, and then later describe the issues this raises for the research community and this specific workshop

    Architecture for Adaptive Intelligent Systems

    Get PDF
    We identify a class of niches to be occupied by 'adaptive intelligent systems (AISs)'. In contrast with niches occupied by typical AI agents, AIS niches present situations that vary dynamically along several key dimensions: different combinations of required tasks, different configurations of available resources, contextual conditions ranging from benign to stressful, and different performance criteria. We present a small class hierarchy of AIS niches that exhibit these dimensions of variability and describe a particular AIS niche, ICU (intensive care unit) patient monitoring, which we use for illustration throughout the paper. We have designed and implemented an agent architecture that supports all of different kinds of adaptation by exploiting a single underlying theoretical concept: An agent dynamically constructs explicit control plans to guide its choices among situation-triggered behaviors. We illustrate the architecture and its support for adaptation with examples from Guardian, an experimental agent for ICU monitoring

    Using action-based hierarchies for real-time diagnosis

    Get PDF
    AbstractAn intelligent agent diagnoses perceived problems so that it can respond to them appropriately. Basically, the agent performs a series of tests whose results discriminate among competing hypotheses. Given a specific diagnosis, the agent performs the associated action. Using the traditional information-theoretic heuristic to order diagnostic tests in a decision tree, the agent can maximize the information obtained from each successive test and thereby minimize the average time (number of tests) required to complete a diagnosis and perform the appropriate action. However, in real-time domains, even the optimal sequence of tests cannot always be performed in the time available. Nonetheless, the agent must respond. For agents operating in real-time domains, we propose an alternative action-based approach in which: (a) each node in the diagnosis tree is augmented to include an ordered set of actions, each of which has positive utility for all of its children in the tree; and (b) the tree is structured to maximize the expected utility of the action available at each node. Upon perceiving a problem, the agent works its way through the tree, performing tests that discriminate among successively smaller subsets of potential faults. When a deadline occurs, the agent performs the best available action associated with the most specific node it has reached so far. Although the action-based approach does not minimize the time required to complete a specific diagnosis, it provides positive utility responses, with step-wise improvements in expected utility, throughout the diagnosis process. We present theoretical and empirical results contrasting the advantages and disadvantages of the information-theoretic and action-based approaches

    The Iowa Homemaker vol.21, no.8

    Get PDF
    We Want to Be Likeable, Mary Ellen Sullivan, page 2 Cotton hose Enlist Glamour, Elizabeth Ann Murfield, page 3 Memorial Union Plans Food for a Year, Pat Garberson, page 4 Government Drafts Textiles, Patricia Hayes, page 5 Gay Clothes Boost Sally’s Morale, Virginia Brainard, page 7 War Revamps Textile World, Betty Roth, page 8 Dehydrated Foods Gain New Victories, Janet Wilson, page 9 What’s New in Home Economics, Dorothy Olson, page 10 Departmental Highlights, Lila Williamson, page 12 War Rations British Homemaking, Marabeth Paddock, page 13 Across Alumnae Desks, Marjorie Thomas, page 14 Bookmarks, Julie Wendel, page 15 File That Information, Barbara Burbank, page 17 Alums in the News, Bette Simpson, page 18 For Victory, Margaret Ann Kirchner, page 20 Spindles, Trymby Calhoun, page 2

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Hayes-Roth

    No full text
    • 

    corecore