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Abstract 

An intelligent agent diagnoses perceived problems so that it can respond to them appropri- 
ately. Basically, the agent performs a series of tests whose results discriminate among competing 
hypotheses. Given a specific diagnosis, the agent performs the associated action. Using the tra- 
ditional information-theoretic heuristic to order diagnostic tests in a decision tree, the agent can 
maximize the information obtained from each successive test and thereby minimize the average 
time (number of tests) required to complete a diagnosis and perform the appropriate action. How- 
ever, in real-time domains, even the optimal sequence of tests cannot always be performed in the 
time available. Nonetheless, the agent must respond. For agents operating in real-time domains, 
we propose an alternative action-based approach in which: (a) each node in the diagnosis tree 
is augmented to include an ordered set of actions, each of which has positive utility for all of 
its children in the tree; and (b) the tree is structured to maximize the expected utility of the 
action available at each node. Upon perceiving a problem, the agent works its way through the 
tree, performing tests that discriminate among successively smaller subsets of potential faults. 
When a deadline occurs, the agent performs the best available action associated with the most 
specific node it has reached so far. Although the action-based approach does not minimize the 
time required to complete a specific diagnosis, it provides positive utility responses, with step-wise 
improvements in expected utility, throughout the diagnosis process. We present theoretical and 
empirical results contrasting the advantages and disadvantages of the information-theoretic and 
action-based approaches. 
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Table I 
Desiderata for a parachutist on perceiving a delay in parachute opening 

Possible situations Conditional probabilities Optimal actions Deadline 

Good parachute 

Low speed 

malfunction 

High speed 

malfunction 

No parachute 

0. I 
0.4 

0.4 

0. I 

Steer normally 

If malfunction on deadline: 

Release main parachute 

Activate reserve parachute 

If malfunction on deadline: 

Release main parachute 

Activate reserve parachute 
Activate reserve parachute 

Now + I20 seconds 

Now + 45 seconds 

Now + S seconds 

Now + 3 seconds 

1. Introduction 

Consider a parachutist in free fall whose parachute seems to be taking longer than 
usual to open. In order to take appropriate action, the parachutist must discriminate 

among four qualitatively different situations: a good parachute that will open soon, 
a malfunctioning parachute with a low-speed fall, a malfunctioning parachute with a 
high-speed fall, or no parachute at all. As summarized in Table 1, these situations 

have different conditional probabilities (given the initial observation), different optimal 
responses, and different deadlines for response. Two diagnostic tests are available to the 
parachutist: (a) look at the altimeter for a few seconds to classify the situation as low 
speed or high speed; and (b) look at the main parachute to classify the situation as one 
involving a good parachute, a malfunctioning parachute, or no parachute at all. Which 
test should the parachutist perform first‘? 

From an information-theoretic perspective, the parachutist should look at the altimeter 
first, because this test will distinguish between the two most likely hypotheses-low- 

speed versus high-speed malfunctions. However, the outcome of this test does not iden- 
tify an appropriate response. If the rate of fall is low, there is either a good parachute 
or a low-speed malfunction. Should the parachutist steer normally or release the main 
parachute and then activate the reserve ? If the rate of fall is fast, there is either a 
high-speed malfunction or no parachute at all. Should the parachutist release the main 
parachute and then activate the reserve or simply activate the reserve? Regardless of the 
outcome of the altimeter test, the parachutist cannot choose an appropriate action until 
he performs the second test, looking at the parachute. The real problem is that there 
may not be enough time to perform that test before the deadline occurs. 

From a utility-oriented perspective, the parachutist should look at the parachute first 
because the results of this test will identify positive utility actions, particularly for the 
most critical contingencies. If there is a good parachute, the parachutist should steer 
normally. If there is no parachute at all, he should activate the reserve immediately. If 
there is a parachute malfunction, even without knowing whether he is falling at low 
speed or high speed, the parachutist has an appropriate response, but need not perform 
it until the deadline occurs. If the parachute malfunction persists until the deadline, the 
parachutist should release the main parachute and then activate the reserve; otherwise 
if the main parachute should inflate before the deadline, the parachutist should use it 
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and keep his reserve parachute in case of a subsequent problem. The default deadline in 
this case should be the shorter of the two deadlines for the competing fault hypotheses. 
In the case of the above table which assumes an original opening altitude of about 
2500 feet, this would be Now + 5 seconds, but with higher opening altitudes more time 
would be available. During this interval, the parachutist can start to perform the second 
test, looking at the altimeter. If he determines that he has a low-speed malfunction, the 
parachutist can extend the deadline to Now + 45 seconds, increasing the chance that he 
can use his main parachute and keep his reserve. In sum, by performing the parachute test 
first, the parachutist can choose an appropriate action immediately; in some cases, if time 
permits, the parachutist can improve his choice of action by subsequently performing 

the altimeter test. 
This simple example of the parachutist illustrates key features of real-time diagnosis 

problems: 
Perceived problems require some form of response by an uncertain, possibly fault- 

dependent deadline. For example, no parachute at all requires an almost immediate 

response when the original opening occurred at 2500 feet, while a parachute malfunction 
allows a variable latency, depending on the speed of falling as well as the altitude at 
which the problem is perceived. 

DifSerent tests discriminate among different subsets of potential faults. For example, 
the altimeter test discriminates between two subsets of faults (good parachute or low- 
speed malfunction versus no parachute or high-speed malfunction), while the parachute 

test discriminates between three subsets of faults (good parachute, malfunctioning [high 
speed or low speed] parachute, and no parachute). 

Diferent tests require different amounts of time and other resources. For example, 

both the altimeter test and the parachute test require use of the parachutist’s eyes, while 
the altimeter test takes a few seconds longer to perform than the parachute test, primarily 
because the altimeter must be observed over a period of several seconds to accurately 
estimate rate of fall. 

Sometimes the sequence of tests required for specijc diagnosis of a perceived problem 

cannot be completed by the deadline. For example, if the parachutist first perceives his 
problem at a lower altitude, he may not have enough time to perform both the altimeter 

and parachute tests. 
Different responses have different utilities for different faults. For example, immedi- 

ately activating the reserve parachute has high utility in the case of no parachute at all, 
lower utility in the case of a malfunctioning parachute (because of possible entangle- 

ment with the malfunctioning main parachute), and very low (actually negative) utility 
in the case of a good parachute. 

Specific diagnoses permit optimal (within the available knowledge) responses. For 
example, knowing that he has a malfunctioning parachute at low speed (as opposed to a 

malfunction at high speed) allows the parachutist to wait longer for his main parachute 
to inflate before releasing it and activating his reserve parachute. 

Nonspecijc diagnoses permit positive utility nonspecijc responses. For example, if 
the parachutist knows only that he has a malfunctiong parachute, but does not know 
whether it is at low speed or high speed, he can release his main parachute and activate 
his reserve parachute for a positive utility in either case. 
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The agent has su.cient advance time, knowledge, and other resources to prepare a 
context-appropriate decision tree for diagnosis and action. For example, the parachutist 
can anticipate that his main parachute might not open on time, go through the kind 
of analysis described above, and decide that he will respond to such situations by first 
performing the parachute test and, if time and circumstances warrant, then performing 

the altimeter test. 
In this paper, we present an action-based approach to diagnosis, in which: (a) each 

node in the diagnosis decision tree is augmented to include an ordered set of actions, 

each of which has positive utility for all of its children in the tree; and (b) the tree is 
structured to maximize the expected utility of the action available at each node. Upon 

perceiving a problem, the agent works its way through the tree, performing tests that 

discriminate among successively smaller subsets of potential faults. When a deadline 
occurs, the agent performs the best available action associated with the most specific 
diagnosis node it has reached so far. 

The remainder of this paper is organized as follows. In Section 2, we formally 
characterize requirements for the two phases of real-time diagnosis, reactive planning and 

reactive plan execution. In Section 3, we describe our action-based approach. Sections 
4-6 evaluate the action-based approach using formal analysis, abstract experiments, 

and demonstration in a particular domain, intensive care monitoring. Sections 7 and 8 
summarize conclusions and identify open problems for future research. 

2. The problem 

At the most basic level, we are interested in the problem of identifying and acting 

on one of a set of faults. For the purposes of this paper, we define a fault as the most 
specific diagnosis in which an agent is interested within a given domain. Thus, a fault is 
a property both of the domain and the goals of an agent. For example, in the parachuting 
domain, there is actually more than one different type of total malfunction-the parachute 
might remain stuck in its container, or the parachute may have been incompetently 
packed, etc. The difference between these total malfunctions is completely irrelevant to 

the parachutist in free fall, and hence from the point of view of the parachutist faced 
with a diagnosis problem, they are one and the same fault. At a later point, when 
debriefing the malfunction on the ground, the two different types of total malfunction 
might be viewed as different faults because the goal then is not critical response but 
rather an attempt to prevent a reoccurrence of the malfunction. 

For dealing with a set of faults, the agent will have available to it a reactive plan. 

Later in this paper, we will analyze in detail a particular type of reactive plan-an 
augmented form of decision tree called an action-based hierarchy-but for now it is 
most important to realize that a reactive plan consists of a series of actions that an 
agent may take in order to diagnose a particular fault in real time, together with actions 
for remedying the fault that it diagnoses. Because the reactive plan is intended to be 
deployed in real time, it is desirable that it consume a minimum of computational time 
and other resources, and that it have an anytime flavor [ 141 to it which will allow it 

to identify useful actions to perform even in cases when resources do not permit its 
running to completion. 
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For the purposes of this paper, the reactive planner that constructs the reactive plan 
may be quite distinct from the agent that executes a reactive plan. Consider, for example, 
a pilot faced with making an emergency landing because of engine failure. The pilot 
has a checklist-a reactive plan-for dealing with this emergency situation. However, it 
is generally not the case that the pilot designed the checklist. Although the pilot is the 
agent who will execute the plan, the checklist is likely to be recommended for all pilots 
flying a particular type of aircraft. This distinction is important because it indicates 

differences in the desired properties of the reactive plan versus the reactive planner. The 
reactive planner need not be especially computationally efficient, because it may have 
substantial time to complete a plan prior to it ever being needed in real time. However, 

the plan that it generates must be computationally efficient for the reasons noted above. 
This distinction will guide the design of reactive plans in this paper. 

Partial diagnoses are quite possible in many domains, and it is essential that the 
reactive plan be able to handle the possibility of making a partial diagnosis. For ex- 
ample, a physician may recommend a transfusion if he/she knows a patient’s blood 

type and that the patient has an anemic condition-even without knowing the specific 
type of anemic condition the patient is suffering from. Such a recommendation is not 
necessarily optimal-knowing the particular type of anemia would enable an optimal 

recommendation-but may be necessary to save the life of the patient. The reactive plan 
must enable an agent to reach similar goals-finding an optimal acton if time permits, 
but taking an action that is less than optimal if necessary because of a deadline. 

We take the view that a partial diagnosis is a set of faults, together with their current 
probabilities, and a complete diagnosis is a single fault, with an attached probability 

of 1.0. Clearly this represents an approximation to the real situation, since we usually 
cannot assert anything with probability 1.0, and it would certainly be an interesting 
topic for further research to provide more sophisticated reasoning under uncertainty. If 

we went this route, we would need a mechanism for ruling a fault out even though its 
probability is not 0.0. As the reactive plan is executed, the diagnosis will gradually be 
refined from the set of all faults in the domain, with their attached prior probabilities, 
to the particular fault that is present in a given situation. 

We have stated that we view a fault as something that needs to be corrected. Because 
of this, the agent also has a set of corrective actions, sometimes also known as responses, 
which it can take in executing the reactive plan. Because the agent is executing a reactive 
plan, it is not interested in designing a long sequene of corrective actions: rather it 

views the execution of a single corrective action as being a solution to a fault. However, 
the reactive planner recognizes that some solutions are potentially better than others, 
and so it has a notion of the value of performing a corrective action. This is a purely 
heuristic estimate given either directly by the domain expert or by some well-understood 
computation within the domain. For the moment, it is assumed to be positive-negative 
“values” (actually costs of actions) will be discussed below. For each combination of 
a corrective action and a fault, there is a value number representing the value of that 

action for that fault. The resulting matrix is expected to be rather sparse in that most 
corrective actions have no value for most faults. For example, filling the tires with air 
will not fix a broken-down engine, but the reactive planner needs to know this either 
explicitly or implicitly. 
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Because of the sparseness of the value matrix, it is not expected that a domain expert 
would need to fill in the entire matrix. Rather, the domain expert would fill in values 
only for those actions that have an interesting effect on particular faults, and the rest 
of the matrix would be automatically filled in with zeroes. Indeed, in a large domain, 
the entire matrix would not need to be represented explicitly even internally within the 

reactive planner. 
There are also COSTS associated with pairs of actions and faults. Again, the cost is 

a heuristic estimate of the cost of performing a particular action in the presence of a 
particular fault. Here we expect that in most cases the cost of performing an action will 

be independent of the particular fault it is being applied to. This captures the notion 
that if the action has no value for the particular fault, then the cost of performing it 
makes it undesirable to perform that action. Because the cost of performing an action 
is in general independent of the fault involved, again the cost matrix can be provided 

by the expert by simply providing costs for the actions and then noting exceptions for 
particular faults. 

In practice, we combine the notion of value and cost into a single notion of total 

utility, which represents the difference between the value and the cost. This utility can 
therefore be negative. The difference between value and cost appears to be the appro- 

priate combining function. If we took the ratio, actions with little value but infinitesimal 

cost would be more desirable than actions with high value but moderate cost-this is 

clearly not a desirable situation. 
The utility of the agent’s response declines over time. For example, in the parachuting 

domain, there is a very sharp decline in the utility of the response as the parachutist 
gets closer to the ground. Note that this decline does not occur instantaneously, for a 

couple of reasons: the time is measured in seconds, but the exact amount of time that it 
will take to reach the ground is not known in advance; and also, there is a time range, 
very close to the ground, where a response, though it may save the parachutist’s life, 
is likely to still result in serious injury. The decline in value of the utility of response 
plays a major role in the desigrl of the reactive plan, because in designing a reactive 
plan, the planner will try to make sure that the best possible response is available to the 

agent before its utility decays to the point of being essentially useless. 
The time axis in these utility graphs is measured from the time when the reactive 

plan is first invoked. The agent will generally invoke the reactive plan after noticing that 
something appears to be going wrong-perhaps it had a regular plan which called for 
a parameter value to be in a particular range, and the value is outside that range. It is 
obvious that the invocation of the reactive plan does not necessarily correspond to the 
time when the fault first appeared, so the reader may ask why we do not measure time 
from the time when the fault appeared. The answer is that the reactive planner cannot 
make use of such knowledge. If it knows approximately how long the agent will have 
after invoking the reactive plan to take action, it can construct the plan accordingly. But 
if the planner only knows how long the agent will have since the fault first appeared, it 
cannot be sure when the plan will be invoked and therefore will be operating in the dark. 
Thus, in providing utility decay information to the reactive planner, one must be careful 
to measure time from the point where the reactive plan will be invoked-which might 
be when the first indication of the fault appeared, not when the fault itself appeared. 
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In order to help the agent diagnose one of the faults, it has available to it a set 
of tests which it can perform. Each test has a set of possible outcomes, and each 
outcome is a set of faults (a subset of the full set). Thus, when a test is performed 
and an outcome is obtained, the agent knows that the actual fault belongs to the set 

corresponding to that outcome. If the agent already has information from another test or 
group of tests that the actual fault falls within some &fSeerential diagnosis (with attached 
probabilities), then the agent can take the intersection of the differential diagnosis 
with the current outcome to produce a new, smaller differential diagnosis. Gradually 

by narrowing down the differential the agent hopes to reduce it to a single fault and 
complete the diagnosis process. The fault sets associated with the outcomes for a given 
test need not be disjoint-some tests may not provide any information one way or 
the other about certain faults. Each fault in each outcome of a test also has attached 
information about how this test outcome affects the probability of this fault. 

A test also has associated with it a set of monitoring actions and diagnostic actions. 

A monitoring or diagnostic action is an attempt by the agent to gain information from 

the world. Specifically, a monitoring action represents an increase in the rate at which 
a given parameter, which is always available to the agent at some frequency anyway, 
is monitored. A diagnostic action is a request to obtain a single value of a particular 

parameter from the world. Both types of actions have two types of costs associated 
with them. There are temporal costs-the amount of time that it takes for the action 
to be performed and the results to come back. Because of the real-time nature of the 
deadlines the agent is up against, temporal costs are important to the agent. Temporal 
costs in turn have two components-the time taken in the world for the parameter values 

to be obtained, and the computational resources consumed by the agent in analyzing 
the parameter values to determine a particular outcome for a test. The exact value of 
the temporal costs will therefore vary depending upon the amount of computational 
resources the agent has to devote to the diagnosis task. There are also physical costs- 

the amount of physical resources consumed by the action. In general, these two types 
of costs must be traded off against one another-we could perform all possible actions 

with great frequency and save on temporal costs, but at great expense regarding physical 
costs. Similarly, we could save on physical costs by performing only one monitoring or 
diagnostic action at a time (thereby performing only those actions that are absolutely 
necessary) but this would increase the temporal costs. 

Faults have associated with them a set of prior probabilities. Because we assume that 
when the reactive plan is invoked, at least one fault is present, the prior probabilities 

must sum to at least 1.0. In the event that we make single fault assumption, which in 
this paper we do, the sum of the priors must be exactly 1 .O. 

It follows from the above description of the basics of the problem that the reactive 
plan will be executing a form of anytime algorithm. At various points in time, it will 
request that tests be performed, and the results of these tests will result in a refinement 
of the differential diagnosis. However, for any differential diagnosis, it is possible to find 
a corrective action that is better than all others, on average, for this differential. Ideally, 
such an action would be one that had substantial value for most of the faults in the 
differential, and as a result it is desirable that the reactive plan be constructed in such a 
way that it is likely to find differentials along the way that have good corrective actions 
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for most of their faults. The algorithm is anytime in the sense that as the differential is 
refined, the value of the best corrective action available is likely to improve as it can be 

made more specialized for particular faults. When the deadline is reached, the corrective 
action associated with the current differential can be recommended and performed. 

2.1. Formal statement of the problem 

The previous section gave an intuitive statement of the problem we are interested in. 

In this section we will state the problem more precisely. However, in order to make the 
problem precise and tractable, we will make first a number of simplifying assumptions 
which will be adhered to throughout the remainder of the paper. 

2.1.1. 

(1) 

(2) 

(3) 

(4) 

(5) 

(6) 

Simplifying assumptions 

There is only trivial uncertainty handling. That is, at all times in the diagnosis 
process, the probabilities of all faults in the differential diagnosis are either zero 
or in the same proportions that they were in originally. 

Deadlines are hard. The utility of a given response for a given fault is constant 
up until a particular hard deadline for that fault, and is zero thereafter. The value 

of the hard deadline is not, however, necessarily known precisely in advance. 
Temporal costs of tests are constant. The amount of time taken for a given test 
to come back is known in advance. 
The agent knows when it has reached its (hard) deadline. When the hard deadline 
referred to in number (2) has been reached, the agent will know, by means not 
discussed in this paper, and can therefore act. 

The single fault assumption is made. Exactly one fault will be present for a given 
invocation of the reactive planner. 
Tests provide information only about ,faults, not about deadlines. The agent 
will not learn any additional information about how much time it has left by 
performing a test beyond what it can infer from the information about faults 
revealed by that test. 

2.1.2. The problem 

The reactive planner is given a 9-tuple with which to construct a plan: 

(ERD,A,KT,O,C,S). 

These are defined as follows: 

l F: the set of faults. 
l P: the set of prior probabilities. P is a function mapping F to the interval [O, 11. 
l D: the set of deadline distributions. D is a function mapping F to the set of 

functions, Df, such that 

30 

D,r( t)dt = 1. 
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Here the semantics are that if D(f) = Df, then the probability that the hard 
deadline for fault f lies in the interval [ tl , t2] is: 

J Df( t)dt. 

A: the set of actions. 
U: the matrix of utilities. U is a function mapping F x A to the interval [ - 1, 11. 
The semantics of this will be discussed in more detail below. 

T: the set of tests. 
0: the set of outcomes of tests. 0 is a function mapping T to sets of faults. For 
example, if O(r) = {oi,o2,. . . ,ok} is a set of outcomes, then each Oi is a subset 

of F corresponding to one possible outcome of the test 7. 
C: the set of temporal costs of tests. This is a function mapping T to the set of 

nonnegative real numbers. 
S: the set of physical costs of tests. This is a function mapping T to the set of 

nonnegative real numbers. 
It will be noted that the notions of monitoring and diagnostic actions have been 

collapsed into a single notion of tests. A test consists of a set of monitoring and 
diagnostic actions, together with the necessary analysis of the results of those actions. 

The interesting properties (from our point of view) of these monitoring and diagnostic 
actions can be captured in the temporal costs and the physical costs of tests. 

We now describe the goal of the agent vis-a-vis the reactive plan. The agent’s goal, 
roughly speaking, is to recommend a series of tests 

where to < tl < t2 < .. . are the times at which tests 70, q ,72,. . . are recommended. 

All times are measured from the invocation of the reactive plan. When making its 
recommendation at time tk, the agent will have available to it the outcomes of all 
tests that have come back already-that is, all outcomes to tests ri, i < k, where 
ti + C (Ti) < tk. The agent must also recommend (and perform) at the deadline some 
action a. The agent is assumed to know when the deadline is and to recommend and 
perform an action at that point, but it continues to perform diagnosis after reaching the 
deadline unless and until it reaches a complete diagnosis. 

The action a is a function of the time t at which the deadline occurs. It also depends 
on two things-the particular fault that occurs and the outcomes to the various tests 
(noting that in the case of multiple outcomes including the same fault, all are equally 
likely). Letting f denote the fault and o denote the various possible outcomes to the 
tests, we can see the action is actually a function of three variables: a( t, f, 0). Thus, 
the utility is a step function: 

u ,,utcon,r(t,f,o) = U(4tYfYo)7f). 

This function intuitively represents the improving utility of the action obtained to date 
during a single invocation of the reactive plan. By taking the mean over all outcomes 
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of the test consistent with this fault, we can reduce this to a function of two variables: 
U,,,,, (t, f) which should also be a step function, albeit with many more steps. Now we 
can reduce this to a function only of the fault itself by weighting this value function by 

the deadline distribution function for this fault: 

x. 

Ufardt ( .f‘) = D/(t)U,,,,(t.f)dt. 

Finally we may compute the overall performance of the agent by calculating the weighted 
sum over all faults: 

u,o, = c ~,fdr ( f 1 p ( f 1 
.fEF 

This number, Utot, represents the overall performance of the agent on this reactive plan. 

Two different reactive plans may therefore be compared by computing different values 

for U,,,, and comparing. Intuitively, what we have done is: take the various actions 
recommended by the agent at different points in time and determine the values of those 
actions for a particular fault. These values are then plotted on a graph and then the 
average is taken of the different performances that are possible for a single fault because 

of uncertainty in test outcome. We then determine the average performance over time 
of the agent on this fault by computing the integral weighted by deadline distribution. 
Finally, we compute the average performance of the agent over all faults by taking the 
average of these functions weighted by probabilities of the faults. This is illustrated 
graphically in Fig. 1. This shows the improving performance of the utility of the action 
recommended for a fault over time as the action changes from AO, A 1, A2, through 
AX. Because in this case the hard deadline is assumed to have a uniform distribution 
between 2.5 and 3.5, only the utilities of the actions recommended at those time points 
are relevant, and the integral computing overall performance is calculated over that 
interval. 

So far the analysis has taken into account only the utility of performing actions. What 
of the cost of performing tests as described in the last section? The temporal cost of 
performing tests is taken into account when we compute the time axis of these graphs. 
The physical cost of performing tests will itself be a step function of time, in this case 

guaranteed to be nondecreasing, which can be computed for a single invocation of the 
reactive plan as follows: 

As with values, we can compute the average over all test outcomes consistent with the 
particular fault to give S,,,,,( t, .f). Now we can compute the weighted integral over time 
to give: 

Sfmdt ( f 1 = I’ Df(t)&,,(t,f)dt. 
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Action A3 
I .oo 

1 
0.15 

Value of 

best action 0.50 

to date 

0.25 

Action A2 

Deadline is uniformly 

distributed between 

2.5 and 3.5. Overall 

performance is 0.625 

Action A0 

0 I 2 3 4 5 

Deadline 

Fig. I. Reactive plan performance on a single fault. 

Finally, we can compute the overall average physical cost of this reactive plan by 

computing the weighted average over different faults: 

S tot = c ~fou!t(f)~(f). 
fEF 

The true performance of a reactive plan may then be computed by determining the 

utility-cost difference Utot - St,,. 
Our goal in this paper is not to directly produce reactive plans. It is, rather, to produce 

a reactive planner that will generate good reactive plans. Thus, we will have a space 
of problems {(E P, D, A, VT, 0, C, S)}. By computing the average performance of the 
reactive plans produced by different reactive planners for the same problem, we will be 
able to compare reactive planners. It is our goal in this paper to propose and evaluate a 
set of reactive planners on just this criterion. 

2.2. Related work 

The most obvious attempted solutions to this type of problem to appear in the liter- 
ature are the anytime planning work of Dean and Boddy [ 141, the decision-theoretic 
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analysis of Horvitz [ 27 J , and the concept of bounded rationality elucidated by Russell 
and Wefald [ 371. Anytime planning involves the idea of an anytime algorithm which 
returns an answer regardless of how long the algorithm runs for, but the value of the 
answer improves over time. Dean and Boddy’s contribution is to analyze the properties 

of anytime algorithms in general but not to propose a particular anytime algorithm; this 
paper will follow in this general framework but will present a particular anytime algo- 
rithm whose properties can be analyzed. Horvitz and Russell and Wefald do a good job 
of analyzing the problem from a theoretical point of view. However, the goals of these 

researchers all differ somewhat from the present research goals in that they assume that 
deliberation or metareasoning time is nontrivial. In other words, they devote significant 
computational resources to deciding what to do, rather than actually doing it. In the 

current research it is an important goal, because of the urgent nature of the domains 
the agent is expected to operate in, to keep metareasoning time at a trivial level. Any 

computational resources used by the agent should be devoted exclusively to analyzing 
the results of tests, not deciding what test to perform next. We are willing to incur a 

potentially high computational expense at the reactive planning stage in order to save 
a much smaller amount of time in executing the reactive plan itself. The approaches 
mentioned above are unable to make this tradeoff because they assume that a single 

agent does both deliberation and acting, and so time spent deliberating is time lost 
acting. 

Although we characterize this work as a diagnosis problem, the connections between 
it and the existing diagnosis literature do not seem too close. Classically diagnosis has 
been cast as a problem in first-order logic [ 35). This approach requires that one have 
a model of the domain in order to do diagnosis. As such Reiter offers one significant 
advantage over our work-the ability to do first principles diagnosis-and has one sig- 
nificant disadvantage-meeting a real-time deadline is impossible. Reiter also shows that 
diagnosis is greatly simplified when the single fault assumption is made-a conclusion 
that we agree with. 

On the subject of multiple faults, the seminal paper is [ 16 1. De Kleer and Williams 
take the approach that diagnosing multiple faults is computationally expensive and 
so they provide a number of techniques for reducing the computational complexity 

of the search. For example, they suggest beginning the search with small potential 
conflict sets and then expanding the conflict sets to produce minimal sets that actually 
explain the flawed behavior of the system. This works when doing diagnosis from first 
principles but seems to be a hard idea to apply to our problem. Our agent starts with a 
large differential diagnosis and then gradually works it down to smaller sets of faults. 
However, we agree with their basic observation that if the number of possible faults is 
small, then coping with their interactions remains manageable, but we cannot expect the 
problem of diagnosing all possible subsets of the set of all faults to be computationally 
tractable. 

Other researchers such as Cooper [ II ] have addressed the problem of computational 
complexity of diagnosis without looking at meeting real-time deadlines. For example, 
Cooper has shown that inference in belief networks is NP-hard. The response to this is 
to attempt to control the search; the TOP N algorithm [25] can be used to generate only 
the n most likely diagnoses. In addition to the lack of meeting real-time deadlines, this 
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approach differs from ours in the use of a Bayesian belief net to represent uncertainties. 
The current work is not an attempt to deal with uncertainty, although it might be a 
worthwhile possible extension to attempt to do so. 

Other approaches to diagnosis include model-based reasoning [ 131, heuristic classifi- 
cation [ 81, qualitative reasoning [ 22,3 11, decision trees [ 331, and various techniques in 
the medical AI literature (e.g. [ 411) . None of these approaches attempt to deal with the 
problem of diagnosis in real time, and so they are of limited usefulness to us, although 
an adaptation of Quinlan’s decision trees will prove to be central to our approach as we 

describe it in the next section. 
Another large body of literature of interest to us is the work on reactive and reul- 

time planning. Before describing the relationship of this work to the present paper, we 

should define what we mean by these terms as different authors may use them for 
different purposes. For us, reactive planning is the task of planning in advance response 
to situations that may arise in real time for which there will not be adequate time to 
respond if we have to do substantial planning at run time. The work in this paper fits 

our definition of reactive planning. 
The ultimate example of reactive planning is universal planning [40] where the 

reactive planner attempts to enumerate in advance exactly what to do in all situations 
the agent may encounter. Ginsburg [23] has shown that in general universal planning is 

not computationally tractable, although it may be in specific cases. We do not attempt 
to enumerate all possible situations in advance. Rather, we enumerate a set of faults 

[ 121 which we expect to be desirable to respond to (including, for example, those that 
are likely to be critical, but not so critical that response is hopeless), and then plan to 
respond only to that set of faults. We therefore are attacking a narrower problem than 

Schoppers did, but with greater chance of success. 
A much less extreme example is triangle tables [ 211 where the agent has a plan to 

execute, but also has a series of preconditions to each step in the plan, so that it knows 
when the situation has changed unexpectedly so that the plan no longer applies and 
thereby the agent can replan. This work represented one of the first efforts in reactive 
planning, but it is limited to recognizing when a plan no longer applies as opposed to 

providing good actions to perform in such a case. 
Brooks’ subsumption architecture [S] is part of this general body of work, although 

he would probably not classify his work as reactive planning. The approach involves 
dividing a robot’s task into a number of layers, with the lower layers providing simple 
abilities such as avoiding objects, and the higher layers providing more complex abilities 
such as identifying objects. This allows reactivity at the lower levels while still permitting 

more complex operations at a high level. Perhaps Brooks’ most controversial claim is 
that there is no need for a central control structure in a robot. Although Brooks has 
provided convincing evidence that his approach works for a simple robot with two or 
three layers, it is not clear that it can scale up. 

Kaelbling and Rosenschein have authored a number of papers on situated uutomatu 

theory [ 2830,361. This theory is based on the assumption that an agent can accurately 
track and represent the state of the world in real time. The basic idea that they have is 
that they can provide guaranteed response in a single (constant time) cycle. This seems 
to imply that their approach would be useful if all deadlines were constant (or at least 
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multiples of a constant) but in the case of our problem, not only do the deadlines vary 
in a much richer way, the costs of tests may not correspond exactly to cycle time either, 
so fitting our problem into their approach seems difficult. Their approach seems far more 
likely to be successful when agent behavior can be mapped into levels of competence 

such that at each level response is required within a constant cycle time. It simply is 
not obvious that our problem can be divided up in this way. 

Chrisman and Simmons [ 71 introduce the notion of sensible planning which brings 
decision theory into the analysis of reactive planning. A robot often needs to perform 

sensing actions in order to diagnose the state of the world. Chrisman and Simmons use 
decision theory to determine which of several possible sensing procedures involves the 

minima1 expected cost. For simple worlds, their approach is probably quite effective, 
but they have no notion of meeting real-time objectives-they are simply interested in 
using the best possible sensing procedure. 

A number of approaches have been taken to real-time planning in the literature. 
Of these, perhaps Dean et al. [ 151 attack the problem closest to the work in the 
present paper. They compute a policy (a mapping from states to actions) on the basis 
of which they can maximize the future discounted value, averaged over time, of the 
world state. This problem is similar to ours in the sense that states in their view 
correspond to differential diagnoses in ours, and a policy corresponds to a decision 

of ours to perform a test in a certain situation (their notion of action corresponds 
to our notion of test; our notion of action can be used to compute their notion of 
the value of a state). However, our problem differs from theirs in several important 
respects. Firstly, all possible states in our world correspond to the set of all subsets 
of our fault set; for a reasonable number of faults this would be intractable. Second, 
there seems to be an unstated assumption that the time to progress from one state 
to another is constant in their domains; in our domains it is not. Finally, they seem 
to require specific mathematical properties of the value discounting function to make 
their algorithm tractable. This function corresponds roughly to our notion of deadline 
distribution, which means that their approach only works for one particular type of 

deadline distribution. 
Hendler and Agrawala 124 J describe a system in which they unify a dynamic plan- 

ning system with a real-time operating system (MARUTI). Dynamic planning systems 

are able to both react and plan, and the amount of time devoted to the two tasks 
itself varies dynamically based upon the nature of the task. Dynamic planning is de- 
signed to address the main flaws in both classical planning and reactive planning: it 
does not assume that a complete plan can be laid out in advance with no unforeseen 
difficulties, and yet it also does not require anticipation of all possible situations in 
advance, either. Hendler criticizes existing planning systems on the grounds that they 
assume that the planner has complete knowledge of the world. He therefore provides 
a reaction component to handle those situations that the planner could not foresee in 
advance. However, we go a step further by not assuming that even the reaction com- 
ponent has complete knowledge of the world. But we do not provide any dynamic 
replanning either, although we anticipate that an agent using our reactive plans will 
also have other reasoning techniques in its arsenal that will be capable of dynamic 
replanning. 
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3. Action-based hierarchies 

In this section we will describe the approach, which we call action-based hierarchies, 

that we take to solve the problem outlined in the last section. We will first describe the 
approach as it applies to a simplified version of the problem, for illustrative purposes, 
and then extend the approach to deal with the complete problem. We will also discuss 
the feasibility of the approach along several dimensions. First, the time complexity of the 

reactive plan must be very low. Second, the space complexity of the reactive plan must 
at least be manageable. Finally, the time complexity of the reactive planner, although 

not central to our goals, must be low enough to permit the use of our approach (and 
possibly to allow some dynamic replanning). 

The simplified version of the problem that we will solve first makes the following set 
of assumptions: 

( I ) Tests have no physical costs. 
(2) No more than one test can be in progress at a time. If the agent performs a 

test, it must wait for the outcome of that test before performing the next test 
in its reactive plan. The first simplifying assumption tends to vastly increase the 
number of tests that can be performed; this assumption limits the number. 

(3) Deadline distributions are not taken into account. As such we cannot make 
absolute claims about the performance of a reactive plan unless it performs 
better than its competitors for all possible values of the deadline. Otherwise we 
can merely observe which deadline values one reactive plan is better for, and 
which other deadline values another plan is better for. 

(4) The reactive plan is invoked as soon as the fault appears (the previous assumption 

requires this assumption to also be made). 
(5) The fault sets associated with the outcomes of each test are disjoint (that is, for 

any given fault, there is exactly one possible outcome of each test). 
The basic data structure that is used to represent a reactive plan is known as an 

action-based hierarchy. An example of an action-based hierarchy is shown in Fig. 2. 
Action-based hierarchies have the following properties: 

( 1) The basic structure of an action-based hierarchy is similar to that of a decision 

tree. 
(2) The leaf nodes of the hierarchy correspond to individual faults (unlike in a 

decision tree where they may correspond to classes of faults one wishes to 

diagnose). 
(3) Each higher-level node has associated with it a set of faults that is the union of 

the sets of faults associated with its children. 
(4) The top node has associated with it the set of all faults. 
(5) Each node has associated with it a corrective action, which ideally will have 

substantial utility for all faults in the associated fault set, but if no such action 
exists, may simply have substantial utility for the most likely such faults. 

The central idea behind an action-based hierarchy is that by identifying actions with 
sets of faults, if the agent only has time to make a partial diagnosis, it will be able 
to perform the action associated with the set of faults related to that partial diagnosis, 
and derive the benefit associated with that action. The goal, ideally, is still to perform 
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Action: A3 

Fig. 2. Sample action-based hierarchy. 

complete diagnosis, but it is also necessary to be able to provide good response in a 

suboptimal situation where complete diagnosis is not possible. 
As shown in Fig. 2, there is also associated with each nonterminal node in the hierar- 

chy a test from the set T (defined in the last section). Suppose that node n has associated 

with it a test r, and O(r) (the set of outcomes of the test 7) = {ot,oz, . . , ok}, and 
that node n has an associated fault set F,,. Then n will have up to k children in the 
hierarchy, one corresponding to each outcome oi for which Oi n F, is nonempty. We can 
thereby formally define an action-based hierarchy as follows: 

( 1) The hierarchy itself consists of a pair (R, N) where R is the root node of the 

hierarchy and N is the set of all other nodes. 
(2) Each node n in the hierarchy is a 4-tuple (L, 7, a, F,,) defined as follows: 

( 1) L is the set of children nodes of this node. In the case of a terminal node, 

this would be empty. 
(2) r is the test associated with this node (or the empty set in case L happens 

to be empty and we are dealing with a terminal node). 
(3) a is the action associated with this node (how this is computed will be 

explained below). 
(4) F,, is the set of faults associated with this node. 

The property given above relating a node to its children may be formally stated as 
follows: If a node n = (L,r,a, F,,) has children L = {nl,n2,. . ,ni}, with each child 
IZ; having the form (Li, ri, a;, F,,,), and the test r has k outcomes {ot,o2,. , ok}, then 
for each ok for which ok n F,, # Q), there exists exactly one child node n,i for which 
Fn, =OknFn. 

Having defined the relationship between a node and its children, we now state the 
conditions that define the action for each node. Specifically, we always associate with a 
node in the hierarchy the action that gives the best expected utility for the set of faults 
associated with that node in the hierarchy. In formal terms, we can define the utility of 
an action for a set of faults by extension from the definition for a single fault: 
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U(F 

“9 

u) = Cm, P(f)U(f3u) 
c fEF,, P(f) 

where P(f) denotes the probability of fault f. Next, we can formally define the property 
that the best action, a,, at a particular node in the hierarchy must have: if the node is 

n = (L, 7, a,, F,,), then 

U(F,,a,,) =yi;WF,,a). 

In this case we write 

a, = a( F,). 

Having defined the best action for a node, and thus the action-based hierarchy, we can 

now specify the algorithm that constitutes the reactive plan that the agent will use: 

Algorithm 1. Reactive plan. 
Step 1. 
Step 2. 
Step 3. 

Step 4. 

Step 5. 

Set the current best hypothesis to the root node, R, in the hierarchy. 

Perform the test associated with the current best hypothesis. 
If the test result does not come back before the deadline is reached, go to Step 

5. Otherwise, modify the current best hypothesis to the child of the current 
best hypothesis corresponding to the outcome of the test that occurs. 
If the current best hypothesis is a terminal node, recommend the action 

associated with that node and stop. Otherwise, go to Step 2. 
Recommend the action associated with the current best hypothesis and stop. 

Thus, the reactive plan is completely determined once the agent knows the hierarchy 
structure. This property of the reactive plan is designed to meet the criterion described in 
Section 2 that the computational resources consumed in executing it should be minimal. 
Given this property of the hierarchy structure, the reactive planner needs to be able to 
structure the hierarchy. It is structured using the following algorithm: 

Algorithm 2. Hierarchy structuring algorithm ( The reactive planner). 

Step 1. 

Step 2. 

Step 3. 

Step 4. 
Step 5. 

Step 6. 
Step 7. 

Step 8. 

Start at the top of the yet-to-be-built hierarhcy, associating the set of all faults 

with this top node. 
Pick a leaf node in the hierarchy in DFS (depth-first search) order, or stop 
if there are no more leaf nodes to expand. Associate with this leaf node the 
action that has the highest expected utility for the set of faults associated with 

this node. 
If the leaf node cannot be expanded further, go back to Step 2 and pick 
another leaf node. 
Find all tests relevant to the set of faults associated with the current node. 

If no tests were found in Step 4, go back to Step 2 and pick another leaf 
node. 
Determine which test found in Step 4 is best according to some heuristic. 
Expand the current node with one child corresponding to each possible out- 
come of the test found in Step 6, and the associated fault sets suitably adjusted. 
Go back to Step 2 and pick one of the children of the current node. 
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The structuring described above is very much like that used in structuring a decision 
tree. The only part of this algorithm that is not completely specified is in Step 6-the 
heuristic used to determine which test is optimal. There are several possible hierarchy 

structuring heuristics which could be used. 

3.1. Hierurchy structuring heuristics 

A hierarchy structuring heuristic is a function that maps tests to the real numbers, 

within the context of a particular node in the hierarchy, such that the larger the result, the 
more desirable it is to perform at the node. The simplest heuristic that could be used is 
the information-theoretic heuristic used in structuring decision trees [ 331. Specifically, 

let the set of faults associated with the current node be F,, and compute the following 
function of the test 7: 

where 

and 

pw(f) = 
P(f) 

# (0 E 7: .f E o} 
This heuristic maximizes the information content gained as one moves from a parent 
to a child node in the hierarchy. Hence it would be expected, in general, to take a 
minima1 number of tests to move from the root node to a terminal node in the hierarchy. 
However, it does not take into account either the cost of performing tests, or the utility 

of the best action available at the intermediate nodes in the hierarchy. Thus, we would 

expect that we could do better-in terms of the evaluation criteria proposed in Section 
2-by using a structuring heuristic that does take these factors into account. 

Therefore, we propose an action-based hierarchy structuring heuristic as follows: 

where 

U(Fo) =tm&‘(Fo,(~) 

for any set of faults FO gives the definition of utility for a set of faults, and 

“(7, F 

II 
) = CoEs I/con Ffl)P(o) 

ILET P(o) 
It will be noted that this structuring heuristic takes into account only temporal costs 
of tests, not physical costs. As such, it relies rather heavily on a particular assumption 
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made at the beginning of this section-that no more than one test can be in progress 
at a time. If more than one test were allowed to be in progress at a time, and physical 
costs of tests were not taken into account, then the agent would be advised to per- 

form as many tests as quickly as possible, as they have no intrinsic cost. In the next 
section we will relax this assumption at the same time as we take physical costs into 

account. 
This gives two possible heuristics for structuring the hierarchy; there are others which 

are given in [ 11. One can hypothesize about the behavior of an agent executing a 
reactive plan derived from either of these heuristics. One would expect the agent that 

is using the action-based heuristic to find actions of higher value for shorter values 
of the deadline. However, the information-theoretic heuristic would converge faster on 
terminal nodes, so for higher values of the deadlines this heuristic would be better. 
Another hypothesis could be that the overall performance (when integrated over all 

values of the deadline) is likely to be better for the action-based heuristic. As we 

will see, it will be difficult to prove these hypotheses formally except in a few very 

specialized cases, but experimentally we can and will test these hypotheses later in the 

paper. 
At this point a word on nomenclature is appropriate. An action-based hierarchy is a 

type of decision tree. There are two heuristics being proposed to structure an action- 

based hierarchy: the action-based heuristic, and the information-theoretic heuristic. Al- 
though it is certainly reasonable to hypothesize that the action-based heuristic, being 

specifically designed for the action-based hierarchy, will provide better hierarchy perfor- 
mance than the information-theoretic heuristic which has a more general applicability to 
all decision trees, this hypothesis must be verified theoretically and/or experimentally. 
The hypothesis could fail if the planner using an action-based heuristic makes “greedy” 
choices at a high level in the hierarchy which do not particularly help it in making the 

more specific diagnoses at a lower level in the hierarchy. 

3.2. Multiple tests at a time 

We now seek to relax the first and second assumptions stated at the beginning of this 

section. Specifically, the planner now takes the physical costs of tests into account in 
deciding when to perform a test. The idea is that the reactive agent may wish to perform 
a test in advance of its really being needed so as to avoid the delay in acting that would 
be involved if it had to wait for the test’s outcome later on. That is, when the agent 
reaches a particular node in the hierarchy in its diagnosis process, it may decide to 
perform not only the test associated with that node but also the tests associated with one 
or more of its children or other descendants. The process by which it does so is known 
as test promotion because it involves “promoting” a test so that it is performed earlier 
than it is really needed. The hierarchy is first structured using the deadline distribution 
heuristic described in [ l] (deadline distribution is essential to take into account in 
deciding whether to do test promotion). Then the test promotion process is done. Test 
promotion involves deciding whether the cost in performing a test earlier than necessary 
is greater than the benefit gained by performing it early. The basic algorithm is fairly 
simple: 
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Algorithm 3. Test promotion. 
Step 1. Structure the hierarchy using the algorithm given above. 
Step 2. Set the current node to the root node in the hierarchy. 
Step 3. First recursively do test promotion by executing Steps 2-4 with the current 

node being set to each of the children of the current node. 
Step 4. Then for each child of the current node in turn, determine whether the perfor- 

mance profile will improve or be worse if the tests for that child are moved 
to the current node. If the profile will improve, move the tests up. 

A formal description of test promotion may be found in [ 1 1. 

3.3. Nondisjoint test outcomes 

The assumption has been made to date that the outcssumption has been made to 

date that the outcomes for a test are always disjoint, or alternatively that each test is a 

partition of the set of faults or that any test has exactly one possible outcome for a given 
fault. In this section, we examine what happens when this assumption is relaxed to the 
weaker assumption that a test may have multiple outcomes consistent with a given fault, 

but those outcomes will all be equally likely in the presence of that fault. 
The primary difference that this imposes is that now it is possible for a node in 

the hierarchy (which corresponds to a set of faults) to have multiple parents, whereas 
before a node could have only one parent. It will therefore be necessary for the agent, 
in executing the reactive plan, to keep track of the set of tests that have been executed 
in reaching a particular node in the hierarchy. One example where this could happen is 
if we are trying to determine the likely winner of a presidential nomination. One easy 
test is to determine whether any candidate has a majority of delegates yet. The set of 
faults here is the set of all candidates, and if this test fails to show a candidate with a 
majority, then the set of possible faults will remain the set of all candidates. However, 
the agent needs to know that the ‘check for majority” has been performed so as not to 
perform it again-just knowing the set of possible faults is not enough. Furthermore, 
each node will have associated with it a set of tests, instead of just a single test, and 
when the node is reached, the highest ranking test on that list that has not previously 
been executed will be performed. Each node will have a number of sets of children, 
one set corresponding to each of the tests that can be performed at this node in the 
hierarchy. 

Structuring the hierarchy will proceed similarly as before. The only difference will 
be that when a child node is potentially to be created, the reactive planner will look at 
the list of existing nodes and determine whether a node already exists with the same set 
of faults. If so, no new child node will be created, but rather a pointer will be created 
to the existing child node. The planner will then determine whether there is a test to 

be performed at this child node consistent with this trajectory through the hierarchy. If 
there is not, further expansion of the child node will be necessary; if there is, then no 
further expansion is necessary. Step 6 in the hierarchy structuring algorithm will change 
to determine the best test among those that have not already been performed in reaching 
this node in the hierarchy. 
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Formally, the only difference is that the 6-tuple that defines each node now becomes: 

so that essentially each node now has a set of children sets instead of just one. 

One important assumption has been made in order to reduce the possibility of a 

combinatorial explosion in expanding the search space. This regards the prior probabil- 
ities of lower nodes in the hierarchies. Because of the differing numbers of competing 
outcomes that different faults may have for a given test, the prior probabilities of faults 

in lower nodes in the hierarchy may not be in the same proportion as the original prior 
probabilities of the faults. However, the above approach assumes that they are. 

3.4. Related work 

The idea of varying the heuristic in structuring decision trees is not new. What is 

new about this application of decision trees is that they are being used not merely to do 
classification, but also to provide meaningful responses in the interim when a complete 

classification is impossible. Since the heuristics used here are tailored to this application, 

they have not been previously used in the literature. It is because of this substantially 
different application that we prefer a different term, action-based hierarchies, for our 

decision trees. 
There is a fairly extensive body of literature devoted to exploring different heuristics 

for decision tree structuring. An information-theoretic heuristic is used by various re- 
searchers: by Cheng et al. in GID3 [ 61, by Fayyad in GID3* [ 191, by Quinlan in C4 
[ 341, by Breiman et al. in CART [ 41, and by Clark and Niblett in CN2 [ 91. Fayyad 
and Irani introduce a class separation approach (C-SEP in [ 201) where the heuristic 
measures not the information content of a test but the degree to which it separates faults 

into the different classes. This presupposes, however, that the goal of using the decision 
tree is to diagnose down to the level of an individual class, not an individual fault. It is 

unclear, therefore, how this approach could be applied to the current problem without 
some delineation of classes that would in turn require applying the action-based heuristic 
first. GID3 and GID3* differ from ID3 (the original information-theoretic approach of 
Quinlan) in that only some of the outcomes of a test are used in branching. Many other 

approaches have also been taken in the literature. 
A novel approach to structuring decision trees, oblique decision trees, is introduced by 

Murthy et al. [ 321. The idea here is that their algorithm, OCl, determines the optimal 
oblique hyperplane with which to split the set of data points. The equivalent problem 
for us would be to design our own tests, rather than using a pre-defined set of tests from 
a given domain. This would be an interesting topic for further research, but is beyond 
the scope of the current paper. 

4. Formal results 

Ideally, one would be able to prove formally that the approach presented in Section 3 
represents the best possible solution to the problem given in Section 2. If this could be 
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done, the paper could immediately be concluded without the need for any experiments 
or examples! Although it turns out this cannot be done, in this section two forma1 
results will be presented without proof. The first result shows that under certain well- 

defined assumptions, the action-based hierarchy provides the best performance in the 
strong sense that no matter what the value of the deadline and no matter what other 
structuring heuristic might be used, the action-based hierarchy will perform at least as 
well. The second result gives a similar conclusion in the case where the hierarchy is 

very small. 

4.1. Optimal action-based hierarchies 

The assumptions that are required to make the claim that action-based hierarchies 
provide optimal performance are the following: 

( I ) All the assumptions made for the most basic version of the problem described 

in Section 3 must be made. 
(2) In addition, one of the following two conditions must hold: 

( I ) The temporal costs of all tests must be equal. 

(2) There must be no time wastage at the deadline: that is, the deadline does 

not occur during the middle of performing a test but rather immediately 
after a test result comes back. 

(3) The really strong assumption that must be made is that the utilities of tests are 
additive for each fault. The utility of a group of tests for a fault is the amount 
by which the utility of the best action available for that fault improves after 
performing the group of tests versus what its utility is before performing the 
group of tests. Additivity means that the utility of any group of tests is the sum 
of the utilities of performing each test. 

4.2. Very small hierarchies 

A similar claim can be made-that action-based hierarchies provide better perfor- 
mance than any possible competitor-under the following conditions which mandate a 
very small hierarchy: 

( I ) All the assumptions made for the most basic version of the problem described 
in Section 3 must be made. 

(2) The temporal costs of all tests must be equal. 

(3) At most two tests are required to complete the diagnosis process (hence the 
resulting hierarchy has depth at most two). 

5. Abstract experiments 

As we saw in Section 4, the set of conditions under which we can formally prove 
that action-based hierarchies provide the best performance is quite limited. Thus, in 
this section and the next, we shall seek other means of validating this work. In fact, 
there will be three separate approaches described in these two sections. In this section, 
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the values of the inputs to the hierarchy structuring algorithm will be assigned ran- 
domly without regard to any specific domain, and the performance derived by using 
the action-based heuristic versus the information-theoretic heuristic will be compared. 

If the performance under the action-based heuristic is found to be better by a sta- 

tistically significant margin than that of the information-theoretic heuristic, then this 
will be evidence in favor of using this approach for structuring hierarchies in real-time 

domains. 
The validation method described in this section can both be criticized and praised on 

the grounds that it is independent of any particular domain. To answer that criticism, 

in the next section we will explore validation of the approach in a particular domain- 
intensive care unit patient monitoring. 

Specifically, in this section we wish to evaluate the following two hypotheses: 
( 1) Using the action-based hierarchy will provide substantially better performance 

than the decision tree when evaluated as described in Section 2. 
(2) Using the decision tree will provide substantially better performance when only 

speed in reaching a leaf node matters. 

5.1. Experimental design 

The problem size, prior probabilities, test outcomes, and values of actions for faults 

were assigned as follows: 

Problem size 
The problem size was allowed to vary and was equal to the number of faults, actions, 

or tests in the domain. That is, the number of faults, actions, and tests were all kept 
equal, and this number is what was allowed to vary. 

Prior probabilities 
The difficulty in assigning prior probabilities is that although they must be assigned 

randomly, they must also sum to 1. The following method was used to assign a set 
of n prior probabilities (for n faults) PI ,p2,. . . ,p,,: First a set of n - 1 random vari- 

ables uniformly distributed on the interval [ 0, 1] was assigned by a random number 
generator: 

XI,X2,...,&-I. 

Then these numbers were permuted so that they were in nondecreasing order: 

Xi, < Xi* < ” ’ < Xi,,_, where{it,iz ,..., i,_l}={1,2 ,..., n-l} 

and finally the priors are assigned as follows: 

PI =xil>P2=Xi* -Xilr*..tPn-l =Xi,,_j -Xi,,_2tpn- - 1 - Xi,,_, . 

The important property of this distribution is that the distribution for each prior proba- 
bility generated in this way is the same. 



Tests 
The number of tests, ~1, must be even. For each test, the fault set is randomly par- 

titioned into two disjoint subsets of size n/2. This does not appear to offer any bias 

in favor of either approach. Both the action-based and information-theoretic approaches 
will tend to favor partitions which give a roughly equal split of the fault set, so in 

partitioning the fault set in this way, a roughly equal advantage is given to each ap- 
proach. The partition is assigned randomly from among the (,,y,) possible ways of doing 

this. 

5.1.1. Values of actions 
The value of an action for a fault is uniformly distributed in the interval [0, 11. 

In performing these experiments, we added another hierarchy structuring heuristic 
in addition to the basic information-theoretic and action-based heuristics: a random 

heuristic. The random heuristic selects a test at random from the set of all relevant 

tests that can be performed at a given node. Formally, this heuristic is defined as 

follows: 

uniform [0, 1 1. 
R(t) = o 1. i I‘ Elo t t: (il c o i-1 F,, c F,, , 

otherwise. 

5.2. Statistical \,alidation 

In order to make any claims about the statistical validity of the results derived from 
these experiments, we need some means for computing statistical validity. The method 
used will be the t-statistic [ 261. Under reasonable assumptions about the experiments, 
and with sets of 100 trials, the t-statistic indicates that a difference of I .75% in hierarchy 
performance between two heuristics corresponds to one standard deviation and 3.5% 
corresponds to two standard deviations. 

5.3. Experiment results 

Fig. 3 shows the difference in performance, over time, of action-based (ABH), 
information-theoretic (DT), and random heuristics, using a problem size of 64 faults. 
This shows that the action-based heuristic always does at least as well as the other 
approaches, no matter what the value of the deadline (the amount of resources avail- 
able for diagnosis), but that this advantage varies over time from nil at time zero, 
to a maximum for deadline values of around 3 or 4, back to nil for large deadline 
values. This corresponds, roughly speaking, to the fact that all hierarchies perform 
equally well at their root and their leaf nodes, but that at the intermediate nodes 
there is an advantage for certain hierarchies over others. The advantage appears to 
be about 8% for deadline values of 3 or 4, which as noted in Section 5.2, corre- 
sponds to at least 5 standard deviations, which can be taken to be statistically signifi- 
cant. 
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Fig. 3. Hierarchy performance with different deadlines and heuristics. 

6. Domain results 

The experiments described in Section 5 were successful as far as they went. They 
provided a good preliminary validation of the approach of using the action-based as 

opposed to the information-theoretic or random heuristics, as well as the increased 
benefits that can be realized by taking deadline distributions and test promotion into 
account. As such, they significantly extended the scope of the theoretical analysis, 
which was extremely limited in that it required very strict assumptions in order to be 
provably optimal. However, to date the approach has been completely in the abstract-in 
this section we apply the approach to a real-world problem to show that similar results 

can be realized in such a problem. 
The first part of this section will describe the domain of application-surgical in- 

tensive care unit patient monitoring-and then results from applying the approach to 
this problem will be presented. These results, while suggestive, cannot be statistically 
validated because the performance of a single generated hierarchy cannot be statistically 
significant. 

6. I. Intensive care unit patient monitoring 

The domain to which these ideas are applied is that of monitoring a patient in an 
intensive care unit (ICU) . A patient in the ICU typically has multiple organ failure and 
is placed on a ventilator to assist with breathing. Because of this, there can be many 
problems that might arise that require fast response; this domain is attractive because of 
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the need to provide such response, and because there are often several different responses 
available of differing specificity that can be undertaken given differential diagnoses of 

different sizes. 
The areas requiring immediate response can be broadly categorized into three groups: 

anemic hypoxia problems which generally require a transfusion of some type; oligemic 
hypoxia problems which may require the immediate invocation of an ALCS (advanced 
cardiac life support) algorithm or treatment of the underlying cause if more time is 
available; and oligemic hypoxia problems generally requiring either some tweaking of 

the ventilator settings or treatment of the underlying cause of the problem. Corrective 
actions in this domain can be of several types; they can buy a medical practitioner time in 

order to diagnose the real underlying problem; they can be effective but not necessarily 

definitive for a wide range of problems; or they can represent the definitive therapy for 
a particular fault. Because the structuring algorithm requires a particular number for 

the value of each action, a medical domain expert provided a heuristic estimate of the 
numerical value of each action for each fault on a scale of 0.0 to 1 .O. 

The tests available in this domain tended to fit into two large categories-lab tests that 
require an average of 20-30 minutes to come back-and monitoring actions involving 
checking parameters-these could be completed in under a minute. The actual tests in 
this domain require a minimum of computational complexity to be analyzed; this is 
not a limitation on the action-based hierarchy approach but rather is an artifact of this 

particular domain. 
Many of the inputs for structuring the algorithm will depend on the type of patient 

in the ICU. For the purposes of illustration. the values used in this demonstration 

were given by a domain expert based on a typical patient at the Palo Alto Veteran’s 

Administration hospital-a 67 year old male who had just undergone coronary artery 

bypass graft (CABG) surgery. 
Various medical domains have been typical vehicles for applying AI ideas over the 

years. For example, the KARDIO system [3] precompiles ECG descriptions based on 
model-based reasoning, which it uses to classify arrhythmias at run time. This represents 
a solution to half the problem that is solved in this paper; we precompile solutions but 

also can make tradeoffs at run time in cases where a complete diagnosis is impossible. 
This appears to be impossible in KARDIO. Another system, VM [ 181, is similar to 

the present work in that it is a real-time medical AI system, but it handled real time 
in a different manner than here. In particular, it was concerned with the complexity 
of reasoning algorithms and with when data values became stale over time, but not 

with deadlines. Therefore, it was unable to make the necessary tradeoffs that a system 
using action-based hierarchies can. Another medical system, TraumAID [lo] was able 
to handle incomplete data, but the notion of meeting a deadline is missing. 

Specific to the problem of intensive care unit patient monitoring, there is a fairly wide 
body of literature. Factor and colleagues [ 171 developed an architecture known as the 
process trellis and applied it to the problem of ICU patient monitoring. The process trellis 
consists of a graph of decision processes which execute in parallel; it has the ability to 
provide parallelism even when knowledge acquisition is done by domain experts with 
little knowledge of parallelism. Although the ability to do parallel processing would 
seem to be a major advantage to this approach, the fact that the processes modeled all 
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directly correspond physiologically to the domain restricts its usefulness in responding 
to deadlines. Response on deadline requires a component that knows specifically about 
deadlines and not necessarily about specific organ systems. 

An ICU patient monitoring system with a strongly decision-theoretic component is 
VentPlan [ 38,391. The idea here is to select a decision-theoretic model of physician 
preferences that effectively trades off complexity and accuracy. This is a different tradeoff 
than the one made by action-based hierarchies, which trade off time for specificity. Still, 

it would be interesting to compare the two approaches to see which yields the better 
results. It appears plausible that action-based hierarchies would perform better in cases 

where incomplete information is available, while conversely VentPlan would perform 

better when complete information is available but time is short. 
EINTHOVEN [ 441 is another ICU monitoring system devoted chiefly to the interpre- 

tation of ECGs. As such it attacks a different subproblem of the ICU problem than the 
one discussed in this paper. Other ICU monitoring systems include WEANPRO [42], 
SIMON [43], and the work of King and colleagues at Vanderbilt [45]. 

6.2. Results in the domain 

The hierarchy structuring algorithm was run, with both action-based and information- 

theoretic heuristics, on the medical problem outlined in Section 6.1. As noted above, 

it is computationally tractable to generate a complete hierarchy for a set of 58 faults 

and measure the expected performance of that hierarchy, but the results generated are 
not statistically significant. Further information about why the generation of a complete 
hierarchy is computationally tractable can be found in [ 11. Of course, the fact that 
this complete analysis is possible does not mean that there is no uncertainty in the 
domain, so in that sense we are solving a simplified version of the actual problem 
with the action-based or information-theoretic heuristics. However, given this simplified 
approximation to the real problem, a complete analysis of the value of a particular 
hierarchy is possible. 

The basic assumption that is made in moving from the actual problem to the simplified 
problem is that the various inputs to the hierarchy structuring algorithm are fixed and 
known in advance. For example, a given test is assumed to come back from the lab in 

a fixed amount of time; in the actual domain the time would be uncertain and known 
only to have a certain approximate mean. Similar comments may be made about the 
other inputs to the hierarchy structuring algorithm. 

It should also be remembered that the goal of this research is to compare different 
possible approaches to the same general problem of reacting when faced with limited 
resources and only basic associative knowledge about the domain. Other approaches such 
as model-based reasoning (handling first principles domain knowledge better) or belief 
networks (handling uncertainty better) might perform better in certain cases especially 
when the agent has greater resources with which to complete its diagnosis and has the 

necessary domain knowledge. It is not the goal of the present research to make this 
comparison, although it would definitely be an interesting topic for further research. 

Fig. 4 shows the results for the performance of the medical hierarchy, with value 
of best action plotted against deadlines. For short values of the deadline, it should be 
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Fig. 4. Hierarchy performance on medical problem (costs factored in). 

noted that action-based hierarchies outperformed information-theoretic hierarchies. For 
some larger values of the deadline, information-theoretic hierarchies do better. These 
results, which as noted earlier are not statistically significant, seem to suggest that if 
the deadline is expected to be short, then action-based hierarchies are provided the best 
response, whereas for larger values of the deadline, the information-theoretic approach 

may be better. 

7. Directions for future research 

The work provides an important contribution to the field in several ways. It represents 
an improvement on existing diagnosis work in that this work either addresses diagnosis 
but not from the point of view of real-time constraints ( [ 351, [ 161, and many others), or 
addresses complexity issues without the specific notion of meeting a real-time deadline 
( [ 111 and some others). With regard to existing reactive planning systems, this approach 
takes us beyond the limitations of having to come up with a response within a single 

cycle or not at all ( [28] and others). Existing anytime systems assume deliberation 
(deciding what to do next) and action (doing it) are interleaved at run time ( [ 141, 
[ 371 and others) -this approach requires that all deliberation take place at planning 
time. As will be discussed further below, it would be interesting to examine further 
the limitations and advantages this approach may offer. Existing attribute selection 
approaches to decision tree construction do not address the real-time question, although 
it would be interesting to try many of them out to see whether others might do better 
for the real-time problem than entropy-this issue has not been fully explored. 
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The question thus arises as to what the limitations are of this approach and whether it 
is reasonable to believe that further work could push back the limitations. This section 
will seek to identify a number of the more promising ideas for extension of the work; 
the description in this section is by no means intended to be complete. 

7.1. Reasoning under uncertainty 

Perhaps the most important capability that would need to be added to this approach 

would be the ability to reason under uncertainty. Right now there is only a limited ability 
in the sense that the system can handle tests that have outcomes that are consistent with 

more than one fault. However, there is no general ability to handle arbitrary changes in 

the probability of faults as the reasoning process progresses. The probability of a fault 
can only be zero or in the same proportion to other possible faults that existed at the 
beginning of the execution of the reactive plan. 

7.2. Deliberation in real time 

The assumption underlying much of this research is that it is desirable to precom- 

pile solutions in advance to reactive problems, at least as much as possible, because 
the structuring process is sufficiently complex and computational resources sufficiently 
scarce in real time that it cannot be wasted on hierarchy structuring. Certainly we are 
not the only researchers to make this assumption-implicit in the work of Bratko et al. 
[ 31 or Widman [ 441 or any decision tree structuring algorithm this same assumption is 
made. But is it a reasonable assumption to make? This is something that has not been 

addressed by this research. 

7.3. Decay in values of actions 

The value of an action for a particular fault is assumed to be constant up to the hard 
deadline, and then zero thereafter. This clearly is not valid in general. Indeed, Rutledge 
[ 381 has proposed that various models be used for the decay in the value of actions as 
a function of time. A useful topic of further research, therefore, would be to incorporate 

Rutledge’s (or similar) ideas into this work. 

8. Conclusions 

This paper has illustrated both the strengths and limitations of the action-based struc- 
turing approach. The greatest strength of the approach is that no possible competing 
approach to the problem previously described in the literature is as effective at solving 
the problem as the action-based structuring approach. Many of the other technologies 
described in the literature do not address the problem addressed by this research; their 
primary drawback is that they are not simultaneously capable of providing response in 
real time and making the planning/real-time tradeoff so essential to this approach. The 
one technology that can be applied to this problem-decision trees-proves to be an 
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effective approach, but capable of being made more so by a number of refinements 
which have been described in detail in this paper. 

In problem domains where reasoning under uncertainty is not necessary, this refined 

approach represents the best known manner of providing real-time response. This ap- 
proach could also be combined with known techniques for reasoning under uncertainty 
in cases where it is necessary, and such a combination would represent an improvement 
of the state of the art in such cases. 
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