241 research outputs found

    High-t Diffraction at HERA

    Get PDF
    The double dissociation photoproduction cross section for the process gamma p -> XY, in which the systems X and Y are separated by a large rapidity gap, is measured at large 4-momentum transfer squared |t| > 20 GeV^2 by the H1 Collaboration at HERA. This measurement provides for the first time a direct measurement of the energy dependence of the gap production process at high |t|.Comment: 3 pages, 2 figures, Talk presented at DIS99, Zeuthen, German

    Parity Violation in Neutron Capture Reactions

    Get PDF
    In the last decade, the scattering of polarized neutrons on compound nucleus resonances proved to be a powerful experimental technique for probing nuclear parity violation. Longitudinal analyzing powers in neutron transmission measurements on p-wave resonances in nuclei such as 139^{139}La and 232^{232}Th were found to be as large as 10%. Here we examine the possibilities of carrying out a parallel program to measure asymmetries in the (n,γ(n,\gamma) reaction on these same compound nuclear resonances. Symmetry-violating (n,γ(n,\gamma) studies can also show asymmetries as large as 10%, and have the advantage over transmission experiments of allowing parity-odd asymmetries in several different gamma-decay branches from the same resonance. Thus, studies of parity violation in the (n,γ)(n,\gamma) reaction using high efficiency germanium detectors at the Los Alamos Lujan facility, for example, could determine the parity-odd nucleon-nucleon matrix elements in complex nuclei with high accuracy. Additionally, simultaneous studies of the E1 and VPNCV_{PNC} matrix elements invol ved in these decays could be used to help constrain the statistical theory of parity non-conservation in compound nuclei.Comment: 10 pages, 1 figur

    Progress on a gas-accepting ion source for continuous-flow accelerator mass spectrometry

    Get PDF
    Author Posting. © Elsevier B.V., 2007. This is the author's version of the work. It is posted here by permission of Elsevier B.V. for personal use, not for redistribution. The definitive version was published in Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 259 (2007): 83-87, doi:10.1016/j.nimb.2007.01.189.A gas-accepting microwave-plasma ion source is being developed for continuous-flow Accelerator Mass Spectrometry (AMS). Characteristics of the ion source will be presented. Schemes for connecting a gas or liquid chromatograph to the ion source will also be discussed

    Understanding and identifying immortal-time bias in surgical health services research: An example using surgical resection of stage IV breast cancer

    Get PDF
    This article presents an overview of how to recognize and address the challenges of immortal time bias using surgical resection of the primary tumor for stage IV female breast cancer patients as a real world example. Surgical health services researchers are increasingly utilizing observational data to assess associations between treatments and outcomes, especially since some procedures are unable to be evaluated through randomized controlled trials. However, the results of many of these studies may be affected by the presence of immortal-time bias, which exists when treatment does not occur on Day 0 of the study. This bias can result in researchers overestimating a treatment benefit, or even observe a treatment benefit when none exists. In this paper, we describe what immortal-time bias is, the challenges it presents, and how to recognize and address it using the real-world example of surgical resection of the primary tumor for stage IV breast cancer throughout. In our example, we guide researchers and illustrate how the early studies, which did not account for immortal-time bias, suggested a protective benefit of surgery, and how these results were supplanted by more recent studies through identifying and addressing immortal-time bias in their design and analyse

    The Timing, the Treatment, the Question: Comparison of Epidemiologic Approaches to Minimize Immortal Time Bias in Real-World Data Using a Surgical Oncology Example

    Get PDF
    Background: Studies evaluating the effects of cancer treatments are prone to immortal time bias that, if unaddressed, can lead to treatments appearing more beneficial than they are. Methods: To demonstrate the impact of immortal time bias, we compared results across several analytic approaches (dichotomous exposure, dichotomous exposure excluding immortal time, time-varying exposure, landmark analysis, clone-censor-weight method), using surgical resection among women with metastatic breast cancer as an example. All adult women diagnosed with incident metastatic breast cancer from 2013–2016 in the National Cancer Database were included. To quantify immortal time bias, we also conducted a simulation study where the “true” relationship between surgical resection and mortality was known. Results: 24,329 women (median age 61, IQR 51–71) were included, and 24% underwent surgical resection. The largest association between resection and mortality was observed when using a dichotomized exposure [HR, 0.54; 95% confidence interval (CI), 0.51–0.57], followed by dichotomous with exclusion of immortal time (HR, 0.62; 95% CI, 0.59–0.65). Results from the time-varying exposure, landmark, and clone-censor-weight method analyses were closer to the null (HR, 0.67–0.84). Results from the plasmode simulation found that the time-varying exposure, landmark, and clone-censor-weight method models all produced unbiased HRs (bias -0.003 to 0.016). Both standard dichotomous exposure (HR, 0.84; bias, -0.177) and dichotomous with exclusion of immortal time (HR, 0.93; bias, -0.074) produced meaningfully biased estimates. Conclusions: Researchers should use time-varying exposures with a treatment assessment window or the clone-censor-weight method when immortal time is present. Impact: Using methods that appropriately account for immortal time will improve evidence and decision-making from research using real-world data

    Shell-model calculations of neutrino scattering from 12C

    Get PDF
    Neutrino reaction cross-sections, (νμ,μ)(\nu_\mu,\mu^-), (νe,e)(\nu_e,e^-), μ\mu-capture and photoabsorption rates on 12^{12}C are computed within a large-basis shell-model framework, which included excitations up to 4ω4\hbar\omega. When ground-state correlations are included with an open pp-shell the predictions of the calculations are in reasonable agreement with most of the experimental results for these reactions. Woods-Saxon radial wave functions are used, with their asymptotic forms matched to the experimental separation energies for bound states, and matched to a binding energy of 0.01 MeV for unbound states. For comparison purposes, some results are given for harmonic oscillator radial functions. Closest agreement between theory and experiment is achieved with unrestricted shell-model configurations and Woods-Saxon radial functions. We obtain for the neutrino-absorption inclusive cross sections: σˉ=13.8×1040\bar{\sigma} = 13.8 \times 10^{-40} cm2^2 for the (νμ,μ)(\nu_{\mu},\mu^{-}) decay-in-flight flux in agreement with the LSND datum of (12.4±1.8)×1040(12.4 \pm 1.8) \times 10^{-40} cm2^2; and σˉ=12.5×1042\bar{\sigma} = 12.5 \times 10^{-42} cm2^2 for the (νe,e)(\nu_{e},e^{-}) decay-at-rest flux, less than the experimental result of (14.4±1.2)×1042(14.4 \pm 1.2) \times 10^{-42} cm2^2.Comment: 19 pages. ReVTeX. No figure

    Microscopic theories of neutrino-^{12}C reactions

    Get PDF
    In view of the recent experiments on neutrino oscillations performed by the LSND and KARMEN collaborations as well as of future experiments, we present new theoretical results of the flux averaged 12C(νe,e)12N^{12}C(\nu_e,e^-)^{12}N and 12C(νμ,μ)12N^{12}C(\nu_{\mu},{\mu}^-)^{12}N cross sections. The approaches used are charge-exchange RPA, charge-exchange RPA among quasi-particles (QRPA) and the Shell Model. With a large-scale shell model calculation the exclusive cross sections are in nice agreement with the experimental values for both reactions. The inclusive cross section for νμ\nu_{\mu} coming from the decay-in-flight of π+\pi^+ is 15.2×1040cm215.2 \times 10^{-40} cm^2 to be compared to the experimental value of 12.4±0.3±1.8×1040cm212.4 \pm 0.3 \pm 1.8 \times 10^{-40} cm^2, while the one due to νe\nu_{e} coming from the decay-at-rest of μ+\mu^+ is 16.4×1042cm216.4 \times 10^{-42} cm^2 which agrees within experimental error bars with the measured values. The shell model prediction for the decay-in-flight neutrino cross section is reduced compared to the RPA one. This is mainly due to the different kind of correlations taken into account in the calculation of the spin modes and partially due to the shell-model configuration basis which is not large enough, as we show using arguments based on sum-rules.Comment: 17 pages, latex, 5 figure

    An Integrated TCGA Pan-Cancer Clinical Data Resource to Drive High-Quality Survival Outcome Analytics

    Get PDF
    For a decade, The Cancer Genome Atlas (TCGA) program collected clinicopathologic annotation data along with multi-platform molecular profiles of more than 11,000 human tumors across 33 different cancer types. TCGA clinical data contain key features representing the democratized nature of the data collection process. To ensure proper use of this large clinical dataset associated with genomic features, we developed a standardized dataset named the TCGA Pan-Cancer Clinical Data Resource (TCGA-CDR), which includes four major clinical outcome endpoints. In addition to detailing major challenges and statistical limitations encountered during the effort of integrating the acquired clinical data, we present a summary that includes endpoint usage recommendations for each cancer type. These TCGA-CDR findings appear to be consistent with cancer genomics studies independent of the TCGA effort and provide opportunities for investigating cancer biology using clinical correlates at an unprecedented scale. Analysis of clinicopathologic annotations for over 11,000 cancer patients in the TCGA program leads to the generation of TCGA Clinical Data Resource, which provides recommendations of clinical outcome endpoint usage for 33 cancer types

    Ripples in a pond: Do social work students need to learn about terrorism?

    Get PDF
    In the face of heightened awareness of terrorism, however it is defined, the challenges for social work are legion. Social work roles may include working with the military to ensure the well-being of service-men and women and their families when bereaved or injured, as well as being prepared to support the public within the emergency context of an overt act of terrorism. This paper reviews some of the literature concerning how social work responds to confl ict and terrorism before reporting a smallscale qualitative study examining the views of social work students, on a qualifying programme in the UK, of terrorism and the need for knowledge and understanding as part of their education
    corecore