46 research outputs found

    Modulation of Phosducin-Like Protein 3 (PhLP3) Levels Promotes Cytoskeletal Remodelling in a MAPK and RhoA-Dependent Manner

    Get PDF
    Background Phosducin-like protein 3 (PhLP3) forms a ternary complex with the ATP-dependent molecular chaperone CCT and its folding client tubulin. In vitro studies suggest PhLP3 plays an inhibitory role in ?-tubulin folding while conversely in vivo genetic studies suggest PhLP3 is required for the correct folding of ?-tubulin. We have a particular interest in the cytoskeleton, its chaperones and their role in determining cellular phenotypes associated with high level recombinant protein expression from mammalian cell expression systems. Methodology/Principal Findings As studies into PhLP3 function have been largely carried out in non mammalian systems, we examined the effect of human PhLP3 over-expression and siRNA silencing using a single murine siRNA on both tubulin and actin systems in mammalian Chinese hamster ovary (CHO) cell lines. We show that over-expression of PhLP3 promotes an imbalance of ? and ? tubulin subunits, microtubule disassembly and cell death. In contrast, ?-actin levels are not obviously perturbed. On-the-other-hand, RNA silencing of PhLP3 increases RhoA-dependent actin filament formation and focal adhesion formation and promotes a dramatic elongated fibroblast-like change in morphology. This was accompanied by an increase in phosphorylated MAPK which has been associated with promoting focal adhesion assembly and maturation. Transient overexpression of PhLP3 in knockdown experiments rescues cells from the morphological change observed during PhLP3 silencing but mitosis is perturbed, probably reflecting a tipping back of the balance of PhLP3 levels towards the overexpression state. Conclusions Our results support the hypothesis that PhLP3 is important for the maintenance of ?-tubulin levels in mammalian cells but also that its modulation can promote actin-based cytoskeletal remodelling by a mechanism linked with MAPK phosphorylation and RhoA-dependent changes. PhLP3 levels in mammalian cells are thus finely poised and represents a novel target for engineering industrially relevant cell lines to evolve lines more suited to suspension or adherent cell growth

    Concise Review: Stem/progenitor cell proteoglycans decorated with 7-D-4, 4-C-3, and 3-B-3(-) chondroitin sulfate motifs are morphogenetic markers of tissue development

    Get PDF
    This study reviewed the occurrence of chondroitin sulfate (CS) motifs 4‐C‐3, 7‐D‐4, and 3‐B‐3(‐), which are expressed by progenitor cells in tissues undergoing morphogenesis. These motifs have a transient early expression pattern during tissue development and also appear in mature tissues during pathological remodeling and attempted repair processes by activated adult stem cells. The CS motifs are information and recognition modules, which may regulate cellular behavior and delineate stem cell niches in developmental tissues. One of the difficulties in determining the precise role of stem cells in tissue development and repair processes is their short engraftment period and the lack of specific markers, which differentiate the activated stem cell lineages from the resident cells. The CS sulfation motifs 7‐D‐4, 4‐C‐3, and 3‐B‐3 (‐) decorate cell surface proteoglycans on activated stem/progenitor cells and appear to identify these cells in transitional areas of tissue development and in tissue repair and may be applicable to determining a more precise role for stem cells in tissue morphogenesis. Stem Cells 201

    Keratan sulphate in the tumour environment

    Get PDF
    Keratan sulphate (KS) is a bioactive glycosaminoglycan (GAG) of some complexity composed of the repeat disaccharide D-galactose Ξ²1β†’4 glycosidically linked to N-acetyl glucosamine. During the biosynthesis of KS, a family of glycosyltransferase and sulphotransferase enzymes act sequentially and in a coordinated fashion to add D-galactose (D-Gal) then N-acetyl glucosamine (GlcNAc) to a GlcNAc acceptor residue at the reducing terminus of a nascent KS chain to effect chain elongation. D-Gal and GlcNAc can both undergo sulphation at C6 but this occurs more frequently on GlcNAc than D-Gal. Sulphation along the developing KS chain is not uniform and contains regions of variable length where no sulphation occurs, regions which are monosulphated mainly on GlcNAc and further regions of high sulphation where both of the repeat disaccharides are sulphated. Each of these respective regions in the KS chain can be of variable length leading to KS complexity in terms of chain length and charge localization along the KS chain. Like other GAGs, it is these variably sulphated regions in KS which define its interactive properties with ligands such as growth factors, morphogens and cytokines and which determine the functional properties of tissues containing KS. Further adding to KS complexity is the identification of three different linkage structures in KS to asparagine (N-linked) or to threonine or serine residues (O-linked) in proteoglycan core proteins which has allowed the categorization of KS into three types, namely KS-I (corneal KS, N-linked), KS-II (skeletal KS, O-linked) or KS-III (brain KS, O-linked). KS-I to -III are also subject to variable addition of L-fucose and sialic acid groups. Furthermore, the GlcNAc residues of some members of the mucin-like glycoprotein family can also act as acceptor molecules for the addition of D-Gal and GlcNAc residues which can also be sulphated leading to small low sulphation glycoforms of KS. These differ from the more heavily sulphated KS chains found on proteoglycans. Like other GAGs, KS has evolved molecular recognition and information transfer properties over hundreds of millions of years of vertebrate and invertebrate evolution which equips them with cell mediatory properties in normal cellular processes and in aberrant pathological situations such as in tumourogenesis. Two KS-proteoglycans in particular, podocalyxin and lumican, are cell membrane, intracellular or stromal tissue–associated components with roles in the promotion or regulation of tumour development, mucin-like KS glycoproteins may also contribute to tumourogenesis. A greater understanding of the biology of KS may allow better methodology to be developed to more effectively combat tumourogenic processes

    The Neuregulin family of genes and their multiple splice variants in breast cancer.

    No full text
    The Neuregulin family consists of four genes, NRG1-4 which can each encode products containing a domain related to the epidermal growth factor family of ligands. Each gene is subject to complex control of transcription and to splicing of their mRNA product to give many variant proteins. These do not contain secretory sequences but some, through their transmembrane sequence, are routed via the Golgi where they are glycosylated, to the cell surface. Here they may be released by regulated proteolysis to act as soluble proteins which can interact and activate members of the EGF receptor family of receptor tyrosine kinases. Other splice variants do not encode transmembrane sequences and these are found either in the cytoplasm or, if they encode a nuclear localisation sequence, in distinct compartments in the nucleoplasm. It has been shown that the variants containing a full EGF domain can act as receptor agonists but the function of the cytoplasmic and nuclear products is unknown as yet

    Axonal Membran-Skeletal Prtein A60 - Association with a Brain Spectrin-Binding Activity and Entry into Cerebellar Axons at a Stage After the Initiation of Axonal Growth

    No full text
    A60 is a 60-kDa component of the axonal cortical cytoskeleton in CNS neurones. It appears to be neurone specific and is tightly bound to brain membranes. In this study the cytoskeletal activities and developmental expression of A60 in rat cerebellum have been examined using the monoclonal antibody DR1. A60 in a partially purified soluble extract of brain membranes interacts selectively with brain but not erythrocyte spectrin. Because erythrocyte spectrin is more closely related to the dendritic form of spectrin than the axonal form, this raises the possibility that A60 localises in axons by interaction with the axonal form of spectrin only. A60 is not found in rat cerebellum before the day of birth. However, during postnatal development of the cerebellum (days 1-13) DR1 reactivity appears progressively. On postnatal day 1, a small population of cells in the mantle layer (presumptive Purkinje cells) is DR1 positive. There is no DR1 reactivity found in Purkinje cell axons during their initial phase of growth. By postnatal day 7, Purkinje cell bodies, initial dendritic segments, and the cerebellar white matter are all positive. This pattern of labelling is strengthened up until postnatal day 13. By contrast, in adult rat cerebellum, the location of A60 has changed so that it is most concentrated in axons, and dendritic staining is lost. These data indicate that A60 is a spectrin-binding component of the adult axonal membrane skeleton, the presence of which is only required in axons after the initial phase of growth
    corecore