612 research outputs found

    NF-ΞΊB c-Rel Is Crucial for the Regulatory T Cell Immune Checkpoint in Cancer

    Get PDF
    Regulatory T cells (Tregs) play a pivotal role in the inhibition of anti-tumor immune responses. Understanding the mechanisms governing Treg homeostasis may therefore be important for development of effective tumor immunotherapy. We have recently demonstrated a key role for the canonical nuclear factor ΞΊB (NF-ΞΊB) subunits, p65 and c-Rel, in Treg identity and function. In this report, we show that NF-ΞΊB c-Rel ablation specifically impairs the generation and maintenance of the activated Treg (aTreg) subset, which is known to be enriched at sites of tumors. Using mouse models, we demonstrate that melanoma growth is drastically reduced in mice lacking c-Rel, but not p65, in Tregs. Moreover, chemical inhibition of c-Rel function delayed melanoma growth by impairing aTreg-mediated immunosuppression and potentiated the effects of anti-PD-1 immunotherapy. Our studies therefore establish inhibition of NF-ΞΊB c-Rel as a viable therapeutic approach for enhancing checkpoint-targeting immunotherapy protocols

    IΞΊBΞ² acts to inhibit and activate gene expression during the inflammatory response

    Get PDF
    The activation of pro-inflammatory gene programs by nuclear factor-ΞΊB (NF-ΞΊB) is primarily regulated through cytoplasmic sequestration of NF-ΞΊB by the inhibitor of ΞΊB (IΞΊB) family of proteins1. IΞΊBΞ², a major isoform of IΞΊB, can sequester NF-ΞΊB in the cytoplasm2, although its biological role remains unclear. Although cells lacking IΞΊBΞ² have been reported3, 4, in vivo studies have been limited and suggested redundancy between IΞΊBΞ± and IΞΊBΞ²5. Like IΞΊBΞ±, IΞΊBΞ² is also inducibly degraded; however, upon stimulation by lipopolysaccharide (LPS), it is degraded slowly and re-synthesized as a hypophosphorylated form that can be detected in the nucleus6, 7, 8, 9, 10, 11. The crystal structure of IΞΊBΞ² bound to p65 suggested this complex might bind DNA12. In vitro, hypophosphorylated IΞΊBΞ² can bind DNA with p65 and c-Rel, and the DNA-bound NF-ΞΊB:IΞΊBΞ² complexes are resistant to IΞΊBΞ±, suggesting hypophosphorylated, nuclear IΞΊBΞ² may prolong the expression of certain genes9, 10, 11. Here we report that in vivo IΞΊBΞ² serves both to inhibit and facilitate the inflammatory response. IΞΊBΞ² degradation releases NF-ΞΊB dimers which upregulate pro-inflammatory target genes such as tumour necrosis factor-Ξ± (TNF-Ξ±). Surprisingly, absence of IΞΊBΞ² results in a dramatic reduction of TNF-Ξ± in response to LPS even though activation of NF-ΞΊB is normal. The inhibition of TNF-Ξ± messenger RNA (mRNA) expression correlates with the absence of nuclear, hypophosphorylated-IΞΊBΞ² bound to p65:c-Rel heterodimers at a specific ΞΊB site on the TNF-Ξ± promoter. Therefore IΞΊBΞ² acts through p65:c-Rel dimers to maintain prolonged expression of TNF-Ξ±. As a result, IΞΊBΞ²^(βˆ’/βˆ’) mice are resistant to LPS-induced septic shock and collagen-induced arthritis. Blocking IΞΊBΞ² might be a promising new strategy for selectively inhibiting the chronic phase of TNF-Ξ± production during the inflammatory response

    Activation and cleavage of SASH1 by caspase-3 mediates an apoptotic response

    Get PDF
    Apoptosis is a highly regulated cellular process that functions to remove undesired cells from multicellular organisms. This pathway is often disrupted in cancer, providing tumours with a mechanism to avoid cell death and promote growth and survival. The putative tumour suppressor, SASH1 (SAM and SH3 domain containing protein 1), has been previously implicated in the regulation of apoptosis; however, the molecular role of SASH1 in this process is still unclear. In this study, we demonstrate that SASH1 is cleaved by caspase-3 following UVC-induced apoptosis. Proteolysis of SASH1 enables the C-terminal fragment to translocate from the cytoplasm to the nucleus where it associates with chromatin. The overexpression of wild-type SASH1 or a cleaved form of SASH1 representing amino acids 231–1247 leads to an increase in apoptosis. Conversely, mutation of the SASH1 cleavage site inhibits nuclear translocation and prevents the initiation of apoptosis. SASH1 cleavage is also required for the efficient translocation of the transcription factor nuclear factor-ΞΊB (NF-ΞΊB) to the nucleus. The use of the NF-ΞΊB inhibitor DHMEQ demonstrated that the effect of SASH1 on apoptosis was dependent on NF-ΞΊB, indicating a codependence between SASH1 and NF-ΞΊB for this process

    Human Bocavirus NS1 and NS1-70 Proteins Inhibit TNF-Ξ±-Mediated Activation of NF-ΞΊB by targeting p65.

    Get PDF
    Human bocavirus (HBoV), a parvovirus, is a single-stranded DNA etiologic agent causing lower respiratory tract infections in young children worldwide. Nuclear factor kappa B (NF-ΞΊB) transcription factors play crucial roles in clearance of invading viruses through activation of many physiological processes. Previous investigation showed that HBoV infection could significantly upregulate the level of TNF-Ξ± which is a strong NF-ΞΊB stimulator. Here we investigated whether HBoV proteins modulate TNF-Ξ±-mediated activation of the NF-ΞΊB signaling pathway. We showed that HBoV NS1 and NS1-70 proteins blocked NF-ΞΊB activation in response to TNF-Ξ±. Overexpression of TNF receptor-associated factor 2 (TRAF2)-, IΞΊB kinase alpha (IKKΞ±)-, IΞΊB kinase beta (IKKΞ²)-, constitutively active mutant of IKKΞ² (IKKΞ² SS/EE)-, or p65-induced NF-ΞΊB activation was inhibited by NS1 and NS1-70. Furthermore, NS1 and NS1-70 didn't interfere with TNF-Ξ±-mediated IΞΊBΞ± phosphorylation and degradation, nor p65 nuclear translocation. Coimmunoprecipitation assays confirmed the interaction of both NS1 and NS1-70 with p65. Of note, NS1 but not NS1-70 inhibited TNF-Ξ±-mediated p65 phosphorylation at ser536. Our findings together indicate that HBoV NS1 and NS1-70 inhibit NF-ΞΊB activation. This is the first time that HBoV has been shown to inhibit NF-ΞΊB activation, revealing a potential immune-evasion mechanism that is likely important for HBoV pathogenesis

    An NF-ΞΊB Transcription-Factor-Dependent Lineage-Specific Transcriptional Program Promotes Regulatory T Cell Identity and Function

    Get PDF
    Both conventional T (Tconv) cells and regulatory T (Treg) cells are activated through ligation of the T cell receptor (TCR) complex, leading to the induction of the transcription factor NF-ΞΊB. In Tconv cells, NF-ΞΊB regulates expression of genes essential for T cell activation, proliferation, and function. However the role of NF-ΞΊB in Treg function remains unclear. We conditionally deleted canonical NF-ΞΊB members p65 and c-Rel in developing and mature Treg cells and found they have unique but partially redundant roles. c-Rel was critical for thymic Treg development while p65 was essential for mature Treg identity and maintenance of immune tolerance. Transcriptome and NF-ΞΊB p65 binding analyses demonstrated a lineage specific, NF-ΞΊB-dependent transcriptional program, enabled by enhanced chromatin accessibility. These dual roles of canonical NF-ΞΊB in Tconv and Treg cells highlight the functional plasticity of the NF-ΞΊB signaling pathway and underscores the need for more selective strategies to therapeutically target NF-ΞΊB

    Dynamic Chromatin Localization of Sirt6 Shapes Stress- and Aging-Related Transcriptional Networks

    Get PDF
    The sirtuin Sirt6 is a NAD-dependent histone deacetylase that is implicated in gene regulation and lifespan control. Sirt6 can interact with the stress-responsive transcription factor NF-ΞΊB and regulate some NF-ΞΊB target genes, but the full scope of Sirt6 target genes as well as dynamics of Sirt6 occupancy on chromatin are not known. Here we map Sirt6 occupancy on mouse promoters genome-wide and show that Sirt6 occupancy is highly dynamic in response to TNF-Ξ±. More than half of Sirt6 target genes are only revealed upon stress-signaling. The majority of genes bound by NF-ΞΊB subunit RelA recruit Sirt6, and dynamic Sirt6 relocalization is largely driven in a RelA-dependent manner. Integrative analysis with global gene expression patterns in wild-type, Sirt6βˆ’/βˆ’, and double Sirt6βˆ’/βˆ’ RelAβˆ’/βˆ’ cells reveals the epistatic relationships between Sirt6 and RelA in shaping diverse temporal patterns of gene expression. Genes under the direct joint control of Sirt6 and RelA include several with prominent roles in cell senescence and organismal aging. These data suggest dynamic chromatin relocalization of Sirt6 as a key output of NF-ΞΊB signaling in stress response and aging

    Structure-Function Relationship of Cytoplasmic and Nuclear IΞΊB Proteins: An In Silico Analysis

    Get PDF
    Cytoplasmic IΞΊB proteins are primary regulators that interact with NF-ΞΊB subunits in the cytoplasm of unstimulated cells. Upon stimulation, these IΞΊB proteins are rapidly degraded, thus allowing NF-ΞΊB to translocate into the nucleus and activate the transcription of genes encoding various immune mediators. Subsequent to translocation, nuclear IΞΊB proteins play an important role in the regulation of NF-ΞΊB transcriptional activity by acting either as activators or inhibitors. To date, molecular basis for the binding of IΞΊBΞ±, IΞΊBΞ² and IΞΊBΞΆ along with their partners is known; however, the activation and inhibition mechanism of the remaining IΞΊB (IΞΊBNS, IΞΊBΞ΅ and Bcl-3) proteins remains elusive. Moreover, even though IΞΊB proteins are structurally similar, it is difficult to determine the exact specificities of IΞΊB proteins towards their respective binding partners. The three-dimensional structures of IΞΊBNS, IΞΊBΞΆ and IΞΊBΞ΅ were modeled. Subsequently, we used an explicit solvent method to perform detailed molecular dynamic simulations of these proteins along with their known crystal structures (IΞΊBΞ±, IΞΊBΞ² and Bcl-3) in order to investigate the flexibility of the ankyrin repeat domains (ARDs). Furthermore, the refined models of IΞΊBNS, IΞΊBΞ΅ and Bcl-3 were used for multiple protein-protein docking studies for the identification of IΞΊBNS-p50/p50, IΞΊBΞ΅-p50/p65 and Bcl-3-p50/p50 complexes in order to study the structural basis of their activation and inhibition. The docking experiments revealed that IΞΊBΞ΅ masked the nuclear localization signal (NLS) of the p50/p65 subunits, thereby preventing its translocation into the nucleus. For the Bcl-3- and IΞΊBNS-p50/p50 complexes, the results show that Bcl-3 mediated transcription through its transactivation domain (TAD) while IΞΊBNS inhibited transcription due to its lack of a TAD, which is consistent with biochemical studies. Additionally, the numbers of identified flexible residues were equal in number among all IΞΊB proteins, although they were not conserved. This could be the primary reason for their binding partner specificities

    Constitutive activity of NF-kappa B in myeloid cells drives pathogenicity of monocytes and macrophages during autoimmune neuroinflammation

    Get PDF
    The NF-ΞΊB/REL-family of transcription factors plays a central role in coordinating the expression of a wide variety of genes controlling immune responses including autoimmunity of the central nervous system (CNS). The inactive form of NF-ΞΊB consists of a heterodimer which is complexed with its inhibitor, IΞΊB. Conditional knockout-mice for IΞΊBΞ± in myeloid cells (lysMCreIΞΊBΞ±fl/fl) have been generated and are characterized by a constitutive activation of NF-ΞΊB proteins allowing the study of this transcription factor in myelin-oligodendrocyte-glycoprotein induced experimental autoimmune encephalomyelitis (MOG-EAE), a well established experimental model for autoimmune demyelination of the CNS

    Bacterial Effector Binding to Ribosomal Protein S3 Subverts NF-ΞΊB Function

    Get PDF
    Enteric bacterial pathogens cause food borne disease, which constitutes an enormous economic and health burden. Enterohemorrhagic Escherichia coli (EHEC) causes a severe bloody diarrhea following transmission to humans through various means, including contaminated beef and vegetable products, water, or through contact with animals. EHEC also causes a potentially fatal kidney disease (hemolytic uremic syndrome) for which there is no effective treatment or prophylaxis. EHEC and other enteric pathogens (e.g., enteropathogenic E. coli (EPEC), Salmonella, Shigella, Yersinia) utilize a type III secretion system (T3SS) to inject virulence proteins (effectors) into host cells. While it is known that T3SS effectors subvert host cell function to promote diarrheal disease and bacterial transmission, in many cases, the mechanisms by which these effectors bind to host proteins and disrupt the normal function of intestinal epithelial cells have not been completely characterized. In this study, we present evidence that the E. coli O157:H7 nleH1 and nleH2 genes encode T3SS effectors that bind to the human ribosomal protein S3 (RPS3), a subunit of nuclear factor kappa-light-chain-enhancer of activated B cells (NF-ΞΊB) transcriptional complexes. NleH1 and NleH2 co-localized with RPS3 in the cytoplasm, but not in cell nuclei. The N-terminal region of both NleH1 and NleH2 was required for binding to the N-terminus of RPS3. NleH1 and NleH2 are autophosphorylated Ser/Thr protein kinases, but their binding to RPS3 is independent of kinase activity. NleH1, but not NleH2, reduced the nuclear abundance of RPS3 without altering the p50 or p65 NF-ΞΊB subunits or affecting the phosphorylation state or abundance of the inhibitory NF-ΞΊB chaperone IΞΊBΞ± NleH1 repressed the transcription of a RPS3/NF-ΞΊB-dependent reporter plasmid, but did not inhibit the transcription of RPS3-independent reporters. In contrast, NleH2 stimulated RPS3-dependent transcription, as well as an AP-1-dependent reporter. We identified a region of NleH1 (N40-K45) that is at least partially responsible for the inhibitory activity of NleH1 toward RPS3. Deleting nleH1 from E. coli O157:H7 produced a hypervirulent phenotype in a gnotobiotic piglet model of Shiga toxin-producing E. coli infection. We suggest that NleH may disrupt host innate immune responses by binding to a cofactor of host transcriptional complexes

    AP-1 Is a Component of the Transcriptional Network Regulated by GSK-3 in Quiescent Cells

    Get PDF
    The protein kinase GSK-3 is constitutively active in quiescent cells in the absence of growth factor signaling. Previously, we identified a set of genes that required GSK-3 to maintain their repression during quiescence. Computational analysis of the upstream sequences of these genes predicted transcription factor binding sites for CREB, NFΞΊB and AP-1. In our previous work, contributions of CREB and NFΞΊB were examined. In the current study, the AP-1 component of the signaling network in quiescent cells was explored.Using chromatin immunoprecipitation analysis, two AP-1 family members, c-Jun and JunD, bound to predicted upstream regulatory sequences in 8 of the 12 GSK-3-regulated genes. c-Jun was phosphorylated on threonine 239 by GSK-3 in quiescent cells, consistent with previous studies demonstrating inhibition of c-Jun by GSK-3. Inhibition of GSK-3 attenuated this phosphorylation, resulting in the stabilization of c-Jun. The association of c-Jun with its target sequences was increased by growth factor stimulation as well as by direct GSK-3 inhibition. The physiological role for c-Jun was also confirmed by siRNA inhibition of gene induction.These results indicate that inhibition of c-Jun by GSK-3 contributes to the repression of growth factor-inducible genes in quiescent cells. Together, AP-1, CREB and NFΞΊB form an integrated transcriptional network that is largely responsible for maintaining repression of target genes downstream of GSK-3 signaling
    • …
    corecore