592 research outputs found

    Carbon Monoxide Oxidation on Model Planar Titania Supported Platinum Nanoparticles Catalyst

    Get PDF
    A high-throughput (parallel) thermographic screening methodology was developed to enable the measurements of the particle size and support influence on heterogeneous catalysts. A high throughput screening chip has been used to establish the catalytic activity of titania supported platinum nanoparticles catalyst for CO oxidation reaction. The catalytic activity of Pt nanoparticles between 1.3 to 7.8 nm has been investigated for CO conversion at a pressure of 0.11 and 1.1 mbar with O2:CO ratio of 1:1 at 80 °C and 0.6, 1.1 and 2.4 mbar at O2:CO ratio of 1:1 at 240 °C. At these experimental conditions, there was an increase in the TOF with decreasing particle size for instance, at 80 °C and O2:CO ratio of 1:1, total pressure of 0.11 and 1.1 mbar, the TOF increased from 0.01 s–1 to 0.171 s–1 with decreasing Pt particle size from 7.8 to 1.3 nm, respectively. However, Pt nanoparticles catalyst displayed higher activity at higher temperature, for example, the TOF increased from 3.312 s–1 to 4.355 s–1 at O2:CO ratio of 1:1, total pressure of 0.6 and 1.1 mbar, respectively, for Pt particle size of 1.3 nm in agreement with the previous reports. Results show that CO oxidation on titania supported Pt nanoparticles catalyst is particle size dependent. On the other hand, findings from XPS measurements show no major change in the particle size after the reaction thus, reflecting the stability of Pt particles. While there is no apparent consensus in the literature reports on the activity trend with particle size for this system, these findings are consistent with most of the previously reported findings. Keywords: platinum; titania; nanoparticles; thermography; CO oxidation

    Entanglement Wedge Reconstruction via Universal Recovery Channels

    Get PDF
    We apply and extend the theory of universal recovery channels from quantum information theory to address the problem of entanglement wedge reconstruction in AdS/CFT. It has recently been proposed that any low-energy local bulk operators in a CFT boundary region's entanglement wedge can be reconstructed on that boundary region itself. Existing work arguing for this proposal relies on algebraic consequences of the exact equivalence between bulk and boundary relative entropies, namely the theory of operator algebra quantum error correction. However, bulk and boundary relative entropies are only approximately equal in bulk effective field theory, and in similar situations it is known that predictions from exact entropic equalities can be qualitatively incorrect. The framework of universal recovery channels provides a robust demonstration of the entanglement wedge reconstruction conjecture in addition to new physical insights. Most notably, we find that a bulk operator acting in a given boundary region's entanglement wedge can be expressed as the response of the boundary region's modular Hamiltonian to a perturbation of the bulk state in the direction of the bulk operator. This formula can be interpreted as a noncommutative version of Bayes' rule that attempts to undo the noise induced by restricting to only a portion of the boundary, and has an integral representation in terms of modular flows. To reach these conclusions, we extend the theory of universal recovery channels to finite-dimensional operator algebras and demonstrate that recovery channels approximately preserve the multiplicative structure of the operator algebra.Comment: 16 pages, 3 figures. v4: Generalized approximate recovery of 2-point functions to arbitrary correlation functions. Clarified relation to previous work. Added Geoffrey Penington as co-autho

    Thermally stable low current consuming gallium and germanium chalcogenides for consumer and automotive memory applications

    No full text
    The phase change technology behind rewritable optical disks and the latest generation of electronic memories has provided clear commercial and technological advances for the field of data storage, by virtue of the many well known attributes, in particular scaling, cycling endurance and speed, that chalcogenide materials offer. While the switching power and current consumption of established germanium antimony telluride based memory cells are a major factor in chip design in real world applications, often the thermal stability of the device can be a major obstacle in the path to the full commercialisation. In this work we describe our research in material discovery and characterization for the purpose of identifying more thermally stable chalcogenides for applications in PCRAM

    Les moyens d'acquérir dans les sociétés « transégalitaires »

    Get PDF
    International audienc
    • …
    corecore