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ABSTRACT  

The conductance and space-charge polarization capacity of single crystals 

of thallous chloride have been measured as a function of frequency between 350°K. 

and temperatures approaching the melting point. Correlation with available 

diffusion data indicates that Schottky disorder is present with the chlorine 

ion vacancy as the predominant charge carrier. Analysis of the capacitance 

results using a modified space-charge theory gives new values of the enthalpies 

of formation and motion of the vacancies present. Thus AHts  = 1.36 eV. ; 

6' Hm(cv) = 0.40 eV. ; 6Hm(av) = 0.09 eV. The defect concentration at 

the melting point is ,v0.08 atomic %. 

Similar measurements on thallous bromide show that Schottky defects 

probably exist in this material with the bromine ion vacancy the more mobile 

species. The characteristic defect parameters for the bromide closely 

resemble those for the chloride. 

The conductivity of single crystals of pure and magnesium doped lithium 

iodide has been measured from room temperature up to 40°K. below the melting 

point. Intrinsic P116 extrinsic regions are identified although magnesium 

appears to be far less soluble in lithium iodide than in the other lithium 

halides. Assuming the presence of Schottky defects with mobile lithium ion 

vacancies we obtain 41Hs  = 1.06 eV. and Ailm(cv)  = 0.43 eV. The estimated 

defect concentration at the melting point of 0.18 atomic % is consistent with 

other systems. Preliminary data for the space-charge polarization in lithium 
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iodide indicate conformity with the predictions of the novel theory developed 

for the thallous halides, but accurate results are difficult to obtain. 

In general terms, the complex dielectric susceptibility yields useful 

values of the defect parameters provided the electrodes are blocking and surface 

conditions are not otherwise disturbed. For materials which may not be doped 

with altervalent ions this method may be the only one which is readily available. 
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CHAPTER I 



INTRODUCTION TO THERMAL DISORDER  

1.1. POINT DEFECTS IN CRYSTALS  

In common with all real crystalline materials, single ionic crystals 

are structurally defective in the sense that strict lattice periodicity is 

broken by line and point imperfections present singly or in interacting 

arraysl, The line imperfections, which may be broadly classified into 

edge and screw dislocations, are not in thermodynamic equilibrium with the 

host, but are stabilised by balanced strains. Point defects, on the other 

band, though frequently present in excessive concentration, can be in 

thermodynapic equilibrium with the host and with aliovalent impurities in 

solid solution. Such equilibria arise from the existence of positive 

entropies of mixing of the point defects with the lattice sites. The two 

most important types of point defect originally introduced to account for 

electrolytic transport, termed the Schottky2  pair and the Frenkel3  pair, 

are most conveniently described by reference to univalent-univalent ionic 

systems such as sodium chloride and silver bromide, which crystallize with 

the rock-salt structure. 

In a Schottky pair one cation and one anion are displaced from their 

normal lattice sites to the crystal surface leaving the crystal neutral 

overall. Formation of Schottky defects thus does not conserve lattice 

sites. On the other hand, in a Frenkel pair one ion moves into an 
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interstitial site of the conjugate sub-lattice leaving behind a vacant site 

on the host sub-lattice. Lattice sites are therefore conserved in a 

Frenkel defect. 

1.1.1. The Statistical Distribution of Defects  

If, as in the case of Schottky disorder, a definite amount of energy 

is required to remove one ion from its normal lattice site to the crystal 

surface there will, at any given temperature, be an equilibrium 

concentration of Schottky defects which may be calculated by normal 

statistical methods4. 

Let AGs be the Gibbs free energy required to form a Schottky pair. 

This may be written as 

4Gs = "f(av) 	"f(cv) 
	 (la) 

where AG f(av) and  "f(cv) represent the Gibbs free energy of formation of 

the anion and cation vacancy respectively. If we now consider one type 

of vacancy alone and introduce n(av) anion vacancies into the crystal the 

free energy of the crystal will be increased by an amount n(av)6Ge(av)  but 

at the same time decreased by the configurational entropy, kT ln.W, arising 

out of the mixing of z\av)  vacancies and N normal lattice sites. The 

change in free energy AG associated with the anion vacancies is then given 

by 
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N!  AG = n(av)6G., % skew - kT ln. (11-n(av))/  11(av)1 	(1.2) 

The equilibrium value of n(av) is then found by minimizing AG with respect 
to composition at constant T and P, which gives (for n(av)<;N) 

fimai=x(av) = 	(.dam-.1(ELI) 
kT 

(1.3) 

where x(alr  ) is the atom fraction of anion vacancies. Similarly for the 

Cation vacancies 

La  i= r(cv) = exP (-16Gf(cv) 	 (1.4) 
kT 

Multiplying Eq. (1.3) by Eq.(1.4) we obtain 

or 

n(av) • 	 k a,ey) = exp 	(4Gf(av) 	46Gf(ol 

(1.5) 

(1.6) 

x(av)* 	x(cv) 

= 

exp 
 (

-Ms 
Tsi.) 

kT 

2 = K 1 

where xo is the atom fraction of either anion or cation. vacancies in the 

pure material. This equation emphasizes the'solubility product' nature of 

the relationship between x 	and x,cv)  in that the product of the fraction (av) 	-k 
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of vacant anion sites with the fraction of vacant cation sites is always 

equal to exp - G's even in more complex situations where x(av) pfx(cv). 
kT 

60f(av) andAGf(cv), which, according to Eq. (1.5), are equal for the 

pure crystal may, of course,be written as 

"f(av) ="f(av) 	Taf(av) 
	 (1.7) 

°Gi(cv) =-ARf(ov) — TbSf(cv) 
	 (1.8) 

where Alif(av),( cv) Sf (av ) anal Sf(cv) represent the corresponding 

enthalpies and entropies of formation of the anion and cation vacancy. 

Following the pioneering work of Wagner, Schottky and Jost5, great 

efforts have been made to determine these characteristic enthalpies and 

entropies of formation as well as the corresponding mobility parameters in 

various substances using a range of techniques, but much of the earlier 

work has been vitiated by spurious experimental effects including surface 

diffusion and significant, but unrecognised, impurities in the nominally 

pure crystals. 

Thus even today, after forty years of research, the defect parameters 

are known with precision for only five systems, all possessing the 

rock-salt structure (NaC16  KC17,  AgC18, AgBr9, LiF10). Even here the 

entropy of formation is uncertain to factors of 2, and the enthalpies of 

formation are continually being challenged. 
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It is therefore of value to study other crystal systems, such as the 

thallous halides, which ezhibit the cesium chloride structure, in order to 

determine the type of disorder present and the characteristic defect 

parameters. Such determinations together with knowledge of the crystal 

structure will clarify the underlying principles involved in the transport 

of matter through ionic materials. 

1.2. EXPERIMEMAL TECHNIQUES FOR DETERMINING POINT DEFECT PARAMETERS  

A direct estimation of the concentration of point defects present in 

a crystal may be made by measuring the linear thermal expansion of the 

( 
material using simultaneous macroscopic 

1o 
.1  and X-ray(12) methods on the ao 

sample. Then for isotropic media, 0, the atom fraction of vacant sites is 

given by11  

eat (.11. 
e 	3 	1o 	a o) 

This approach has proved valuable for metals12, but does not yield 

reproducible results for ionic crystals13  owing to the difficulty in 

eliminating thermal strains and high temperature creep, although it is 

useful in predicting the type of defect present since it can detect the 

increased concentration of substitutional ionic sites produced by the 

formation of Schottky pairs, an effect which is absent from Frenkel systems. 

Measurements of specific heath' can also produce useful data when the 
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expected defect concentration is high and the specific heat of the crystal, 

in the absence of defect formation, can be accurately, extrapolated to the 

melting point. 

In general terms, the direct measurement of equilibrium properties 

has proved disappointing for ionic crystals. However, in contrast to 

metallic systems, ionic crystals are suitable media for studying the 

macroscopic, correlated motion of charged lattice defects by electrical 

techniques which, in the event, provide a rich spectrum of detailed 

information far outweighing that from any other approach. Such phenomena 

as diffusion, ionic conductivity, and dielectric relaxation, all belong to 

a class of thermally activated processes characterized by a temperature 
AU dependence proportional to exp --) where AU represents the energy 

barrier between adjacent potential minima in phase space. Self-diffusion 

data are of fundamental importance in this respect but electrical 

investigations involving the measurement of ionic conduction, dielectric 

loss and space-chArge polarization lend themselves to a more detailed 

interpretation. 

This work, therefore, is concerned with the study of ionic 

conductivity and nolarization in monocrystalline material under the 

influence of such externally variable parameters as temperature, A.C. 

frequency and voltage. 

In order to correlate this macroscopic motion of lattice defects 

with the atomic model of jumping vacancies and interstitials, we shall 
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consider some aspects of the theoretical approach in the next section. 

1.3. CALCULATIONS OF DIFFUSION RATES AND ACTIVATION ENERGIES  

These calculations may be divided into: 

(i) the calculation of defect formation energies at lattice sites, and 

(ii) the calculation of the frequency of defect jumps. 

1.3.1. Defect Formation Energies  

The computation of such energies involve considerations of the 

coulombic interactions, electronic and displacement polarization, together 

with elastic termso both before and after formation of the defect. Such 

calculations have always been based on the Born ionic model with some form 

of Born-Mayer repulsive potential, but the treatment of the polarization 

appears to be rather more intuitive. 

The Mott-Littleton approach15treats the crystal beyond nearest 

neighbour ions as a quasi-continuum dielectric in order to calculate the 

total electric polarization, subsequently dividing it in proportion to the 

16 electronic and displacement polarizabilities of the ions. Mullen , 

however, has pointed out the importance of next-nearest neighbour 

interactions in the fluorite structure and Brauer1? has shown that defects 

are a source of elastic strain, consequently adding an elastic term to the 

displacement field. Hardy and Lidiard18  have attempted to determine the 

true relaxed configuration of the lattice by Fourier transformation of the 
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equilibrium equations of lattice statics ensuring no resultant force on 

any of the complete set of normal co-ordinates introduced. This provides 

the true asymptotic displacement and polarization fields - the displacement 

being further split into strain and polarization components. In the limit, 

however, this approach may be reduced to Mott-Littleton mechanistics 

illustrating the fundamental validity of this latter model. Calculations 

often agree quite well with experimental values but are more useful in 

predicting relative trends since theoreticians often claim too much for 

their own particular model in' that separate calculations may agree with 

different empirical values. In this respect Rao and Rao
19 have calculated 

a value of 1.05 eV. for AHs in cesium chloride in agreement with Morlin
1s20  

experimental determination of 1.06 eV. whereas Harvey and Hoodless21 claim 

a value of 1.34 eV. which is more in line with Boswarva's22  calculation of 

1.34 eV. where elastic terms and deformation dipoles have been included. 

1.3.2. Jump Frequencies  

All jumping mechanisms are thermally activated in the sense that they 

operate through normal thermal fluctuations which supply the local 

concentrations of energy and momentum necessary for the ions to pass through 

the intermediate high energy configuration or saddle-point, already 

mentioned, between one lattice site and another. It is useful to think of 

a vibrating crystal as a continuum of such saddle-points when it remains to 

calculate the probability w.dT that in any interval of time dT the ion is 
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at the rigid lattice saddle point with a velocity directed towards the 

final position. Wert's theory23  was based on this approach, invoking 

the basic assumption that all important saddle-points are situated on the 

plane midway between initial and finnl  

expression of the type 

(.41 = Y exp 	AGm) 
IcT 

(the jump probably 

per unit time) 

lattice sites. This yields an 

(1.9) 

where V is the frequency of vibration of an ion in the mean potential field 

about its equilibrium position in the jump direction. In addition to 

this, since the ion is constrained in a force field due to the remaining 

ions in a vibrating, and not static, lattice the potential barrier has the 

nature of a free energy &Gm  - the free energy of activated mobility. 

Vineyard24 generalized Wert's theory, removing the basic assumption 

concerning saddle-points, by considering a reaction path and saddle-point 

in N-dimensional space for the whole crystal. Once again the frequency 

of crossing the saddle-point could be calculated by equilibrium statistical 

mechanics in the harmonic approximation. 

Rice25  provided an alternative approach to this activation problem 

with his'dynamical theory' . He considered a complex consisting of a 

vacancy and the jumping ion surrounded by a large number of other ions 

(three shells): the rest of the crystal acting as a heat-bath. An 
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ion-vacancy exchange then occurred when one of a set of critical 

configurations of atomic co-ordinates is attained - the frequency of such 

interchange being again evaluated in the harmonic approximation. It is 

now considered that predictions of the dynAmical theory are contained 

within the Vineyard formalism when the same approximations are made and 

most modern theories are based on one or other approach. 

Franklin has attempted to evaluate the importance of the enharmonic 

effect since in the harmonic approximation interactions between lattice 

vibrations are not possible and much of the dissipation of energy by the 

diffusing species is not accounted for. 

A somewhat novel approach to vacancy diffusion has recently been 

discussed by Omini27  where ions near a vacancy are described by a Gaussian 

distribution in vibrational amplitudes and are assumed to jump into 

adjacent lattice sites when a certain critical amplitude is reached. 

Using a Debye model it is possible to obtain a simple expression, for the 

rate of diffusion allowing a direct comparison with experimental data, 

which is not the case with the theories of Rice and Vineyard. Such 

correlation studies have in general been restricted to metallic lattices 

where agreement is sometimes good, but often unpredictable28. 

Nevertheless, the basic Eq. (1.9) together with our knowledge of the 

equilibrium concentration of defects enables us to evaluate the 

conductivity, which is determined solely by the product of the defect 

concentration and mobility. 
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1.4. IONIC CONDUCTIVITY  

Shewmon28  (p. 52) obtains an equation for D(cv) the diffusion 

coefficient of a cation (or anion) vacancy in a uni-univalent lattice: 

2 
D(cv) = ao sx(cv)*(4)  

(1.1o) 

where ao 
is the lattice spacing parameter andwis again the probability 

per unit time that any ion will jump into a particular vacant site. 

D(w() is related to o-(cv), the conductivity of a cation vacancy, by the 

Nernst-Einstein equation4 below 

Ne2 

kT 

which equates the diffusion of entities down a concentration gradient with 

their drift in an electric field. Eqs. (1.4), (1.9), (1.10) and (1.11) 

then combine to give 

17 

etsf(cv) 6sm(cv)) •  

exPrilf(cv) Alim(cv)) 
kT 

kcv = NA°  e
2  exp 	AG-fcv)  

\ • exp 
k 

0-  1 	
2 	

I 	 AG  ra(OV)  
(1.12) 

kT 	kT 	kT 

 

or cr(cv).12 = Nao eV 

kT 

(1.13) 
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( 

= c-0  exp - 4Hf(cv) + 4/1/m(cv)  
kT 

(1.14) 
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where c-o 
is constant if the entropies and enthalpies are assumed 

independent of temperature. 

The temperature dependence of the ionic conductivity a- in crystalline 

material is therefore most meaningfully represented graphically as log c-T 

against reciprocal temperature which, in general, provides a curve similar 

in shape to the classical plot4  displayed in Fig.(1.1). These three 

regions can be treated quite separately in terms of a simple model 

originally due to Teltow29. The conductivity c- may, of course, be made 

up of contributions from a number of mobile charge carrying species 

(anion vacancies, cation vacancies, interstitials, etc.), where cla and ti  

represent the conductivity and transport number of the ith species, such 

that, 

c- 	cr. t . 	 (1.15) 
i 

and 
i 

In order to simplify this discussion we shall consider only Schottky 

disorder, with mobile cation vacancies, although the treatment is quite 

general both in its application to mobile anion vacancies and Frenkel 

disorder. 



1.4.1. Region  

This is known as the intrinsic region. Thermally created defects 

predominate and the conductivity, according to equation (1.14) may be 

given as 

or 	or.  exp - (+Ails 	AH
m(cv)d) = 0-  exP - 41H1 	(1.16) 

kT 	kT 

whereellif(ov) has been replaced by one half of Alls, the enthalpy of 

formation of a Schottky defect. In fact we only know that AGf(av) 

%Icy) but theoretical calculations22 indicate thati1Hf(av) veHf(cv) as 

well. However, cation and anion vacancies are always found in pairs and 

it is only possible to measure, in effect, the value of jAH
s. As in all 

other investigations of this type, therefore, we shall assume that 

"f(cv) = 

Experimentally, it is often found that region I is not straight, as 

Eq.(1.16) would predict, particularly at high temperatures, the principal 

cause being the presence of additional charge carriers such as mobile anion 

vacancies or interstitials. The curvature is then a natural consequence 

of the non-equivalent enthalpies of motion of the conducting species. In 

such cases we must write 	for the conductivity and calculate 07 and 

t from self-diffusion data using the Nernst-Einstein equation and the all 

important concept of jump correlation, discussed later. Fuller and 

Reilly, and other workers, have attempted the reverse of this process in 
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the sense that they have separated the intrinsic conductivity due to 

Schottky defects into anion and cation vacancy contributions by a least 

squares analysis of the curve in this region. This approach, however, 

quite apart from its mathematical shortcomings, involves the accurate 

knowledge of a number of critical parameters including ABm(av) and ABm(cv)t  

and often provides irreproducible values of the transport numbers in 

variance with those obtained by classical electrolytic methods. 

The high concentration of defects in this region also provides a 

basis for defect interaction and such concepts as vacancy pairs31, 

"lattice-loosening"32, and Debye-Huckel ionic atmospherese  have been 

invoked, sometimes unnecessarily, to explain deviations from the classical 

theory. 

1.4.2. Region II  

We know that,in general, 

2 -1 
x(av).x(cv) = xo 	

K 
 (1.17) 

and, for the pure crystal, that 

x(av) = x(cv) = xo 

However, the presence of aliovalent impurities when substitutionally 



or 	= xc  .Nao  2e
2P exp 	AGm(cv)  

kT 	kT 

xc
. 0

t  exp -1111m(cv)  
T 
	

kT  

incorporated in the host lattice will give'rise to an increased concentration 

of one or other type of vacancy through the necessary condition of 

over-aL charge neutrality. Thus 

I(ov) ' '(w) 	xc 	 (1.18) 

where xc is the atom fraction of divalent cationic impurities present in 

the crystal. When xc  >> xo  (at lower temperatures), x(cv)  is determined 

by xc  alone and the conductivity in this extrinsic or impurity-controlled 

region becomes, according to Eq.(1.10), 

22 

xc. o o 	exp -6H2 
T 	kT 

where or-' is another constant. For constant temperature, therefore, a 

plot of c-  against x
c should be linear for impurity-controlled conduction 

if cation vacancies are the only mobile charge carriers. For example the 

incorporation of divalent manganese6 into sodium chloride, which exhibits 

Schottky disorder with mobile cation vacancies, raises the conductivity by 

virtue of the increased concentration of mobile vacant sites whereas the 



addition of oxide33  lowers the conductivity by increasing 	x, kavi 

subsequently reducing x(cv) through Eq.(1.17). Furthermore, in a 

substance like strontium chloride, intrinsicallydisordsredby anionic 

Frenkel pairs, the addition of monovalent sodium enhances the conductivity 

whereas trivalent yttrium reduces it, indicating mobile chlorine vacancies 

Aliovalent anion impurity doping - mainly oxide - has been far less 

successful partly because of the difficulty in analytically determining 

the oxide. Since, however, a divalent metallic cation has a virtual 

positive charge when substitutionally dissolved in a uni-univalent lattice, 

it may be effectively complexed as a pair by either a vacant cation site35 

or an oxide ion, both of which have a virtual negative charge at their 

respective lattice sites. This means that the oxide ion could extend 

region I to a lower temperature by nullifying the effect of the divalent 

cation through Eq.(1.17), an effect, the study of which is becoming 

increasingly popular on account of the experimental difficulties involved 

in removing all traces of oxide from the crystal. Indeed the unremarked 

presence of oxide ions has probably been the largest single influence in 

causing irreproducibility in earlier work.7 

1.4.3. Region III  

The impurity-vacancy complex pairs previously mentioned determine 

the conductivity in this region with 
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(6Ha(iv) 6Hm(cv)) (1.21) 
kT 

cr 
0 

T 

exp - 

kT 

where Alla(ix) is the binding energy of the impurity-vacancy complex and 

Alim(cv) is, as usual, the enthalpy of motion of the dissociated cation 

vacancy. The data in this "association region" with respect to impurity 

concentration and related conductivity may be analysed using the well-known 

Teltow association29  theory and Debye-Huckel interaction theory. 

Correlation over small concentration ranges inherent in the Teltow approach 

is often very good, but background impurities are difficult to treat. As 

predicted theoretically the binding energy of the impurity-vacancy complex 

increases with the ionic radius of the impurity ion.39 

1.4.4. Below Region III  

The conductivity below region III is characterized by precipitation 

and aggregation of the impurities6  '4°, but the results are often 

irreproducible. This is often due to the long periods of time required to 

reach equilibrium at these low temperatures tut Chang41 has used the 

kinetics of precipitation as a novel means for determining the defect 

formation enthalpy of sodium chloride. 



1.5. POLARIZATION EFFECTS  

In the presence of an electric field, ionic crystals generally 

display some time-dependent, transient phenomena in the conductivity such 

that: 

0- (°°) 	07t(0) - ciransient 

This effect is best observed under D.C. conditions when time-current 

curves38  may be produced to indicate the extent of polarization in the 

dielectric. However, different phenomena manifest themselves depending 

on the temperature and it has been found useful to discuss the high 

temperature polarization, where defects are dissociated, quite separately 

from the low temperature polarization where impurity interactions may 

predominate42143. At temperatures below these the static dielectric 

constant is determined by the electronic and lattice polarization of the 

crystal. 

A.C. and D.C. values of the conductivity are known to agree quite 

closely in the low temperature region6 but at the high temperatures which 

concern us, the A.C. value is always the greater. Here the frequency 

dependent accumulation of space-charge is known to occur reducing o-, and 

the passage of D.C. current may effect electrolysis, chemically altering 

the nature of the material. The high frequency A.C. conductivity is 
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therefore the meaningful value. 

1.5.1. High Temperature Polarization  

Polarization effects arising from the motion of charge carriers under 

the influence of an externally applied electric field in materials with 

blocking electrodes have been investigated in the past both theoretically 

and experimentally44. Chang and Jaffd45  extended this concept to the 

treatment of semi-conductors and electrolytes by analogy with JaffOs 

earlier work on electrolytic solutions, but more recently Macdonald46  and 

Friauf47 have independently developed more meaningful theories, discussed 

in Chapter 2, because it was felt that previous treatments were 

insufficiently applicable to some physical situations which might be 

important in practice, particularly in connection with the association of 

charge carriers and their relative mobilities. 

Macdonald obtained an extremely complicated general solution for the 

A.C. admittance of an ionic crystal treated as a slab of conducting 

dielectric, but found that it could be reduced in certain limiting cases 

and subsequently related to the capacitive and resistive components of 

current flowing through the crystal. Friauf deduced the equivalent 

parallel circuit arrangement of these two components, both of which can be 

frequency dependent, but more recently Raleigh48 has pointed out that this 

arrangement can be equally well represented by a frequency independent 

capacitance and resistance in series which therefore become the physically 
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meaningful parameters. This approach may well be simpler theoretically 

and experimentally in defining perturbations of the frequency dependence, 

but will not, of course indicate the nature of such perturbations any more 

than the parallel representation. 

Jacobs49'50451  and co-workers, working on potassium chloride, have 

made the only systematic attempt to correlate experimental data with 

theoretical predictions, but have encountered many difficulties in 

determining the extent of polarization in terms of the experimentally 

measured capacity. Thus, values of the capacity may vary over two orders 

of magnitude for identical experiments, exhibit strong temperature 

hysteresis and will depend markedly on the material and physical nature 

of the electrode. Without doubt, the electrode is the most important 

single factor in determining the capacity and the concept of complete 

blocking51 has been modified to include the possibility of partial blocking, 

but the
4
ad hoc nature of this approach is inevitable since the type of 

electrode processes involved is little nmerstood. It is therefore wiser 

to work, whenever possible, with electrodes that are known to be completely 

blocking. 

1.6. DISORDER IN CRYSTAL SYSTEMS  

The experimental work on ionic crystals (for a review see Ref. 52) 

has been concentrated almost entirely on face-centred cubic structures in 

the alkali halides and silver halides. Sodium chloride and potassium 



chloride are both known to exhibit Schottky disorder, with the cation 

vacancy appreciably more mobile, whereas in silver chloride and silver 

bromide the charge is carried almost exclusively on the cation sub-lattice 

with interstitial silver ions some 2-10 times more mobile than vacant 

cation sites. Limited studies on the fluorite structure34  indicate 

• that the principal disorder is anion Frenkel. 

Both the cesium halides21  and the thallous halides, which possess the 

simple cubic, cesium chloride, structure are thought to exhibit Schottky 

disorder, but the experimental data are often conflicting and analysis 

made more complex by the fact that both anion and cation contribute 

significantly to the conductivity. 

1.6.1. Thallous Chloride and Thallous Bromide  

Earlier studies on the ionic conductivity of thallous chloride in the 

temperature range 425°K. - 600°K. are in good agreement (see Table 1.1), 

although all results, except those of Friauf who used single crystals, 

were obtained on pressed pellets. Today single crystals are used, wherever 

possible, as they provide greater reproducibility in the absolute value of 

the conductivity, values obtained with polycrystalline material being too,  

low. For the measurement of space-charge effectssingle- crystals are 

essential otherwise the results are liable to be vitiated by charge-carrier 

blocking at internal boundaries and short-circuiting of the charge along 

preferred conduction paths at the grain boundaries. 
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Author Temperature °K. 6H1  eV. 0-(575°K.) ohm-lem:/  

Friauf53 640o  - 6900  0.85 

Friauf 430°  - 640°  0.75 3.8 x 10-4  

Lehfeldt54  320° - 680° 0.82 2.5 x 10-4  

Phipps andcc  
Partridge 400°  - 660°  0.75 2.2 x 10-4  

Hauffe and 
Griessbach-Vierk56 420o  520° 0.72 1.5 x 10 

or = o; exp -4SH, for thallous chloride. 

Table (1.1) 

Hauffe added PbC12 to some of his crystals in concentrations varying 

between 0.1 and 3 mole %. This effectively reduced the conductivity in 

the intrinsic region indicating mobile thallium ion interstitials or 

chlorine ion vacancies, but the lead chloride appeared to be of only 

limited solubility as no further reduction in the conductivity was observed 

for impurity concentrations greater than 0.2 mole %. 

Friauf57  has measured the self-diffusion coefficients in thallous 

chloride and found that both ions are appreciably mobile with the chlorine 

ion always possessing the greater mobility. This is in accordance with 

the cesium halides, where the mobility of the anion is slightly greater, 

but in direct contrast to the alkali halides having the rock-salt structure 
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where the cation is the predominant charge carrier in conduction. In 

general, where Schottky disorders exists in a crystal, both ions are 

appreciably mobile which is not the case with Frenkel disorder. In the 

light of the self-diffusion data, therefore, Hauffe's results indicate 

Schottky disorder in thallous chloride with mobile chlorine ion vacancies. 

This will be confirmed in this work by accurate correlation of Friauf's 

self-diffusion data with our own conductivity results using the jump 

correlation arguments described in Chapter 2. 

A recent comparison by Christy and Dobbs,58 assuming Schottky disorder, 

of Friauf's diffusion results with their own thermoelectric power data 

has given preliminary estimates of the energies of formation and motion 

of the anion and cation vacancy, together with the equilibrium defect 

concentration as a function of temperature. The present work provides 

a wholly independent estimate of the defect concentration using polarization 

measurements, which moreover does not depend on any assumptions, inherent 

in Christy's analysis, concerning the solubility or eventual complex 

formation of divalent cations, and consequently leads to a new set of 

parameters. 

Like the chloride, thallous bromide is known to be an almost exclusively 

ionic conductor55, but knowledge of the conductivity is more limited - 

Table (1.2). 
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Author Temperature °K. AH1  eV. a-  (500°K) ohm71cm.-1  

Phipps and 400°  - 660° 0.76 9.0 x 10-6  
Partridge"  

Hermann6°  425° - 575° 0.83 6 x l0' 

= or• exp - L1H1 for thallous bromide. 

T 

Hermann has also measured the transport number of the bromine ion as 

0.9+0.1 at 570°K down to 0.7 near the melting point. This increasing 

cationic contribution to the conductivity should reveal itself as a slight 

but distinct, curvature in tho logcsT against plot at higher temperatures , 

but unfortunately Hermann's conductivity results scatter by as much as 

100% in some cases. 

1.6.2. Lithium Iodide 

Haven61 has investigated the ionic conductivity in the pure and 

magnesium-doped lithium halides, Assuming Schottky disorder, he analysed 

his results in the extrinsic region using Teltow's simple theory and 

obtained good correlation between the conductivity and impurity concentration 

for the fluoride, chloride,and bromide. However, his results for the 

iodide were scant and inconclusive although he managed to obtain the 

preliminary values given in Table (1.3) in spite of his log al-T against 
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plot for the pure material being continuously curved at temperatures 

above 500°K. 

Author 41 1 eV. AEI
2 
eV. x(ov) atomic % at m.p. 

Haven.57 1.06 0.42 1.15 

o-  = 0-  exp - 411  , 	o-  = xc o  .0-1  exp -All2 for lithium iodide. 

T 
	

kT 	T 	kT 

Table (1.3) 

There have been no investigations of polarization effects or space-

charge build-up in any of these three materials. 
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CHAPTER. 2 



THEORETICAL CONSIDERATIONS 

We shall here develop formal theories for correlated diffusion and 

space-charge effects in a uni-univalent Schottky system and refer only to 

Frehkel systems where appropriate, although the theoretical approach is 

quite general and equally applicable to Frenkel disorder. 

2.1. CORRELATION EFFECTS FOR DirrUSION 

2.1.1. The Nernst Einstein Equation  

As pointed out in section 1.4.1. the diffusion coefficient D(cv)  of a 

cation vacancy (or anion vacancy) is related to its mobility )1(cv) in an 

electric field by the Einstein equation4. 

Pc.v)  = ig- 
D(cv) 

(2.1) 

The conductivity o7 	of a cation vacancy is given by nfk NT(  ), ovi cv 

and therefore, 

2 0-(cv) 	n(cv)e 

D(cv) 	kT 

This relation is rigorously correct, but it does not allow for 

comparison with experimental values as we are unable to obtain D(cv) 

(2.2) 
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directly. The quantities that are usually measured are the total 

conductivity c (cv) + Cr18.0 (for Schottky disorder) and the r   
diffusion coefficients for the two ions, ec', and ec:, which may be obtained 

separately using tracer techniques. It therefore remains for us to 

obtain a relationship between ecE:, the diffusion coefficient of the cation, 

and D(cv). Such a relationship is derived rigorously in section 2.1.2., 

but we give the result below in order that we may modify Eq.(2.2). 

x(cv) 

DE  
c 

(2.3) 

In practice, therefore, the microscopic Einstein relation, Eq.(2.2), 

is replaced by the macroscopic Nernst-Einstein equation below, 

Gj 	= Be 
2 

ke7/  

kT 

(2.4) 

where N is once again the concentration of cation (or anion) sites. We 

may extend this treatment to include mobile anion vacancies such that in 

general, for Schottky disorder, 

= 
	Dc 

(D: cr(cv) 	°-(av) kT 

 

(2.5) 

 

= 4)- 
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These are shown only as site 

positions and are not related to 

size. 

Some possible jumping mechanisms in the thallous chloride lattice. 

1. Vacancy 

2. Direct interstitial 

3. Direct interstitial 

4. Collinear interstitialcy.  

5. Non-collinear interstitialcy 

6. Collinear interstitialcy 

7. Non-collinear interstitialcy 

Fig. (2.1) 
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or 	cr 	Ne2 
	

(2.6) 
(D: 4. ea) 
	kT 

A similar equation is obtained for Frenkel disorder. 

Four effects, present to different extents in different systems, may 

cause deviation from Eq.(2.6) which, as a result, is usually only 

approximately satisfied when experimental values are inserted. 

(i) Vacancy jumps are completely random in time and amongst the 

available directions as determined by the crystal structure, whereas there 

is correlation between the directions of successive jumps of the tracer 

ion which can in fact only jump when it is adjacent to a vacancy. This 

will be discussed in section 2.1.2. 

(ii) There may be charge carriers other than vacancies, such as 

electrons. 

(iii) Under the restrictive condition that a jumping interstitial 

ion never undergoes exchange with the ions of the host lattice:the concept 

of the defect and its ionic charge do not become spatially separated. 

However, for a class of interstitial jumping mechanisms in which defect/host 

exchange is allowed, the displacement of the defect differs from that of 

any of the ions involved (see Fig. (2.1) for the interstitialcy mechanism). 

This effect is not p4sent for vacancy jumping, but it will be mentioned 

again later. 

(iv) There may be a neutral complex, such as a cation/anion vacancy 

pair or a vacancy/aliovalent ion dipole, that contributes to the diffusion, 



but not to the conductivity. 

Eq.(2.6) must therefore include an experimentally determined over-all 

correlation factor f°  which may contain the influence of all four of the 

effects described above such that 

foNe2 

(Dc +Da) 	kT 

The factor fo may then be written as 

f°  = f..f 

f 

(2.7) 

(2.8) 

where fj, the jump correlation factor, arises out of (i), the non-random 

jumping motion of the tracer ion, and f
d1  the displacement factor, accounts 

for the non-equivalent jump displacements of tracer And  defect described in 

(iii). fc is the charge transference number of the vacancies. 

If we assume the absence of any neutral complexes, the essence of the 

problem is then the theoretical calculation of f. and f
d for various 3 

diffusion mechanisms such that Eq.(2.7) may be satisfied. 

2.1.2 The Random-Flight Problem and Jump Correlation 

If' we consider the motion of an ion on a crystalline sub-lattice 

containing vacancies as the only defects, it is quite a simple problem to 

obtain an equation for the motion of such an ion through a sequence of 
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discrete jumps. The motion of any one vacancy throughout the sub-lattice 

is entirely random since after every jump its neighbours are identical, 

which means that each jump of the vacancy is entirely independent of any 

preceding jump. When, on the other hand, we follow the motion of the 

tracer ion, it may be seen that each successive jump of the tracer is not 

wholly independent of what has gone before, since after any jump all of its 

neighbours are not identical - one is a vacancy - and the most probable 

next jump of the tracer is back to the vacant site. We demonstrate the 

important consequence that the mean square displacement of the tracer 

after n jumps will be less than that for a vacancy which took the same 

number of jumps. 

The theory of random-flight28  gives the mean square displacement of 

any particle after n jumps, Rn,in a general form: 

n-1 n-j 
R
n 

= nr2 (1 + 2 :E: :E: cos O. . . ;) 
n j=1 i=1 	1, J 14- (2.9) 

where r is the displacement distance of the jump and eiti+j  is the angle 

between the jump directions of the ith and (i+j)th jumps. 

If each jump is independent of all preceding jumps (as in the case of 

vacancy jumping) the average value of the term in Eq.(2.9) involving the 

double sum will be zero giving 

Rn (vacancy) .= 
	= zus 2 
	

(2.10) 
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Is a preliminary to discussing the theory of correlation effects, 

it is necessary to establish the relationship between this microscopic 

treatment of diffusion, involving a sequence of discrete jumps, and the 

macroscopic approach, where the distribution of particles is governed by 

classical diffusion equations and the mean square displacement is given 

by28 

R = 6Dt 
	

(2.11) 

Since the mean square displacement of a particle after a very large 

number of discrete jumps must correspond to the prediction of the 

macroscopic approach, the diffusion coefficient for cation (or anion) 

vacancies is found by combining Eq.(2.10) and Eq.(2.11) 

D(cv) t 2 

	
(2.12) 

or D(cv) = 	Icv)r2 
	

(2.13) 

with 1 v;  the average number of jumps per second for each vacancy. 

In order for a tracer ion to make a jump, a vacancy must be next to it, 

and the probability of this is Z.n cv  where Z is the number of nearest 

neighbour sites of the tracer ion. N  The probability that the vacancy will 

jump towards the tracer, however, is'only 1 and hence the over-all jump 

39 



frequency for the tracer cation I is 

-1.Z.n(cv) r(lcv) 

n(cv)  11(cv) 
	

(2.14) 

By analogy with the treatment of vacancies the mean square displacement 

of the tracer cation. R.2 is found to be 

Rn2  (tracer cation) c nr2 R2 

or 	R2 .=. rcr2t 
	

(2.15) 

= 6D*t 
	

(2.16) 

in the case that the double sum term in Eq.(2.9) may again be put to zero. 

Combining Eqs.(2.15)—(2.16) we find that 

!Lai = n cv = x(cv) 	 (2.17) 

This relationship between the microscopic and macroscopic diffusion 

coefficients for the vacancy and tracer respectively is extremely important 
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in connecting Eq.(2.2), the microscopic Pinatein relation, to Eq.(2.4), 

the macroscopic Nernst-Einstein equation. The latter equation was extended 

to give Eq.(2.6) below, 

or = Ne2 

(D3E  + D9E) 	kT o a 

but the four invalidating effects already mentioned in connection with this 

equation may now be specified. 

(i) The directions of successive jumps of the tracer ion must be at 

random so that the double sum term in Eq.(2.9) is zero. This is not the 

case for a tracer ion moving by a vacancy mechanism so that the jump 

correlation factor which may be defined as 

fa a limit (tracer) 

n-9 	

ktracer) 

n-*co R
n
2  (defect) 

(2.18) 

is not equal to 1. 

(ii) The displacement of the vacancy and tracer ion must be the same 

so that the jump distance r is identical for both species. 

(iii) All the current must be carried by free vacancies so that fo  

may be put equal to 1. 

2.1.3. The Calculation of the Jump Correlation and Displacement Factors  

According to Eq.(2.18) the jump correlation factor for vacancy 
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diffusion, fjk  / v) 
%, is given by 

(go = limit Rn (tracer) 

n---> oo R2 (vacancy) 

mia n-j 

( 
= limit 1 +2 7 2: cos eili+j n ...> co 	n 4'''''' 

j=1 ia 

(2.19) 

where e now refers to the angle between tracer jump directions. 	The bar 

in this equation means to average the double sums for a large number of 

diffusing particles. The same quantity can be obtained by averaging the 

values of cos 9 for a large number of particles and summing these. That 

is we can substitute 
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cos G1,1.  . . +3 

 

j=1 i=1 

As a final aid in reformulating this expression, we note that in any cubic 

or close-packed lattice all solute jumps are equivalent except for their 

orientation, which is to say that all tracer-vacancy pairs that have just 

completed an exchange are indistinguishable, aside from their orientation. 

The value of 
cosei,i+j 

 is therefore the same for each value of i. 



Designatingthisnewaverageascos 0. 1m can write Eq.(2.19) as 

n-1 
= limit 1 t 2 	(n-j) cos 8j 
n -0c0 	n . 

J=4 

(2.20) 

In the limit as n->co, (n =i) 	for the initial terms of the series and 
n 

Eq.(2.20) may be written 

fj(v) = 1 + 2cos el  + igg-62  +  	(2.21) 

The problem is now reduced to calculating the mean value of the cosine of 

the angle between the ith (arbitrarily selected) and the (i+l)th jump 

vectors (cob 6]) the mean value of cos 0 for the ith and (i+2)th jump 

vectors (Erg2), etc. 

Compaan and Haven62  have shown that (cos 8j) = (cos 81)i  for a vacancy 

mechanism and therefore Eq.(2.21) becomes 

.fA,N y') = lt2(cos 8l) + 2(cos01)2  + - - - - (2.22) 

In order to compute (cos 91) it is necessary to calculate the 

probability of the tracer making its next jump to each of its Z nearest 

neighbours, having exchanged with the vacancy on its previous, or ith, 

jump. Compaan and Haven did this for a number of latticesby considering 

only one vacancy to be present. This is equivalent to assuming that the 
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density of vacancies is so low that no other vacancy will exchange with 

the tracer before the vacancy has randomized its position with respect to 

the initial solute-vacancy exchange. Some of their results are given in 

Table (2.1). 

Lattice Z 
f i(v) 

Two dimensional: 

Square 4 0.467 

Hexagonal 6 0.560 

Three dimensional: 

Diamond 4 

Simple cubic 6 0.655 

Body-centred cubic 8 0.721 

Face-centred cubic 12 0.781 

Values of the jump correlation factor for 

vacancy diffusion in various lattices62. 

Table (2.1) 

For direct interstitial diffusion (see Fig. (2.1), 2 and 3) the 

environment of the tracer is identical after each discrete jump and its 

motion is consequently random. The jump correlation factor for a tracer 

ion moving by a direct interstitial mechanism is therefore equal to 1. In 
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general, there will be jump correlation for diffusion by the interstitialcy 

mechanism and f will vary between 0 and 1. 

Oa the other band, the displacement factor, fd, for vacancy diffusion 

'will equal 1 as both vacancy and tracer have identical. jump displacements. 

Similarly fd  will be 1 for direct interstitial diffusion, but for the 

interstitialcy mechanism the displacement factor will vary again between 

0 and 1. For example the collinear anion interstitialcy jumps in 

Fig.(2.1) are characterized by a displacement factor of 4- as the defect 

moves twice the distance of the interstitial tracer ion. 

There are two possible interstitial positions for an ion in the 

thallous chloride structure as shown in Fig. (2.1). The one situated at 

the edge centre of its own sub-lattice is favoured by repulsive energy 

whereas the other at the face-centre is favoured by Coulombic energy. 

However, when we consider the geometry of the lattice, there appears to 

be little space for the interstitial ion, particularly the anion, at 

either position on account of the large sizes of the two ions (T1+  

1.518, Cl-  = 1.810. By far the most realistic defect on spatial grounds 

is the vacancy. 

Jump correlation and displacement factors for the possible diffusion 

mechanisms in the thallous chloride lattice are given below in Table (2.2) 
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Mechanism 
Number 
in Fig. 
(2.1) 

f.
J  

f
d 

fj..1d  

Vacancy 1 0.655 1 0.655 

Direct interstitial 2 1 1 1 

Direct interstitial 3 1 1 I 

Coll. interstitialcy 4 I + 

Non-coll. interstitialcy 5 0.932 0.621 

Coll. interstitialcy 6 0 4. 0 

Eon-coll. interstitialcy 7 1 1 1 

Jump correlation and displacement factors for diffusion in 

the thallous chloride lattice57. 

Table (2.2) 

In practice Do_ is calculated from 

Or = Ne2 

D 	kT 
or 

and compared with (D: + DV which provides f°  since 

(2.23) 

t = 	fo  kD + cr 	 D8) (2.24) 
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If fc is known then f.j
.f
d 
 may be obtained experimentally using 

E4.(2.8), 

f°  = 

fc 

However, the theoretical values of fj..fd  for some diffusion 

mechanisims are extremely close - see Table (2.2) - and experimentally it 

is difficult to determine the diffusion coefficient to such accuracy that 

it is possible to assign unambiguously a certain type of defect motion 

using correlation considerations alone. Rather, if either Schottky or 

Frenkel disorder is suspected, it is often feasible to confirm the 

presence of one or the other by.the foregoing analysis. 

This will be the case with thallous chloride, where Schottky disorder 

has been postulated. Present conductivity measurements will be correlated 

with Friauf's diffusion data57  in an attempt to define the type of diffusion 

mechanism involved. 

2.2. SPACE-CHARGE EFFECTS 

2.2.1. The Charge Carrier Model 

The concentrations of anion vacancies p (positive charge carriers) 

and cation vacancies n (negative charge carriers) within a Schottky 

disordered ionic crystal in an electric field will, in general, be functions 
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of position x as well as time t, both because of the motion of charge 

carrying vacancies and because of the presence of continuous dissociation 

and recombination of neutral vacancy pairs. 

To simplify the treatment, the concentration of any extraneous traps 

for vacancies will be taken as vanishingly small and all vacancies present 

will be assumed to have come from a concentration of N neutral pairs. 

Then conservation of over-all electroneutrality requires 

fo p(x,t)dx = 	n(x,t)dx 	 (2.25) 

where L is the length of the crystal with electrodes at x = 0 and x = L. 

The initial distribution of these neutral pairs before any dissociation 

occurs will be assumed to be uniform throughout the length of the crystal, 

but after some dissociation has taken place, the concentration of neutral 

pairs may be a function of x and t and will be denoted by np. 

On dissociation, a neutral pair produces a mobile negative charge 

carrier (cation vacancy) and a mobile positive charge carrier (anion 

vacancy): the number of carriers produced per second at a position x will 

then be proportional to the product of np(x) and a rate constant ki  which 

will depend, inter alia, on temperature. Similarly, the rate of 

recombination will be given k
2
n(x)p(x) at any time. 

With these preliminary considerations, the equations of detailed 

balance including the effects of diffusion and motion under the influence 
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of an applied electric 

k = - k1  np  • - at 

As = k1np - at 

b= -k1np 

field 

k2np + 

k2np 	+ 

+ k
2
np 

E may be written as46  

D 	 2. 	- 	II 	(pE) (2.26) 

(2.27) 

(2.28) 

axe 

D'a2  n 

ax 

- 	p.'05(nE) 

ax2  ax 	
--- 

at 

where p., D represent the mobility and diffusion coefficient of the anion 

vacancy; )1', D' of the cation, vacancy. The diffusion coefficient of 

the neutral pair is assumed to be negligibly small. 

The charge densities must also satisfy the Poisson equation, 

(221) = 47re(n-n)  
ax t 

(2.29) 

where K is the static dielectric constant in the absence of the free 

charges. If the voltage between the electrodes is v(t) we also require 

that 

L 
v(t) = 	E(x,t)dx 	 (2.30) 

As we are to investigate the case where both electrodes are blocking 
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for both positive and negative carriers, no conduction current arising 

frmn the motion of either type of carrier can flow across the electrodes, 

and the pertinent boundary conditions are: 

jipE - D .42 = 

at x = 0, L. 

(2.31) 
ax 

Wan. 
ax 

= (2.32) 

These conditions have been selectively relaxed by Friauf47 and by Jacobs 

et a151  _in order to explain specific experimental results, but without 

marked success: the reason for their remaining discrepancies apparently 

lies elsewhere. 

Equations (2.25) to (2.32) are the fundamental equations of the 

problem and it now remains to solve them for n,p, and E for a simple 

sinusoidal forcing voltage. 

v(t) 	vie" 
	

(2.33) 

Since the equations are non-linear, the current through the crystal 

will contain all harmonics of the forcing voltage and accurate solutions 

for n,p, and E would show that they would all involve zero frequency 

(static) components together with the fundamental and all its overtones. 

By taking V1 sufficiently small the ratio of higher harmonic components to 
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the fUndamental component in no, and E may be made negligible and 

expressions for these quantities can then take the truncated, linearized 

form 

n(x,t) = no(x) + ni(x)ei44 	 (2.34) 

We shall also assume that the static concentrations of no and po 
are 

equal. Let their mutual value be xo. It then follows from Eqs. (2.29).  

and (2.30) that E0  =0 and that xo  is homogeneous throughout the crystal. 

This assumption cannot be completely correct because it leads to 

expressions for !nil and  I Pi I which may be larger than xo  near the 

boundaries for large applied voltages. Physically, however, it is 

obvious that no  and po  must be equal to or greater than 
nd and  1P1 

respectively, at every point in the crystal; otherwise, the over-all 

concentrations n and p would go negative during part of each cycle. Near 

the elctrodes, then4no and po will actually be neither equal nor 

homogeneous. Nevertheless, since the polarization capacitance and 

conductance are directly determined by n1, pl, and El  and only indirectly 

by the coupling of these quantities to no, p
o, and E we can assume that 

the A.C. capacitance and conductance will not be greatly effected by the 

neglect of the x dependence of the latter static quantities. 

Since no and po are assumed equal and homogeneous the static 

concentration of neutral pairs n
Po 

 will be simply (N-x
o
). We then find, 
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on substituting expressions of the form of Eq.(2.34) into the earlier 

52 

equations, that 

0 	 + k2 02 

imp, = klupi  -k2(pi  + xo  + D d
2pl  -pxodEi  

dx dx2  

iwnl  = kinpi  - k2(pi  + ni)xo  + D'd2ni  - texodEi  
dx dx2  

iwn 	k n 	- k (n,tP )x p1 — 1 pl 	2 	1 o 

f

0

L 
(n1-pi)dx = 

dEl  = 41re(p1  -nl) 

0 

at x = 

dx 

V 1 =  

x 0 E 

L 
E1dx 

Ddp, = 0 
dx 

- Didni  = 
dx 

(2.35) 

(2.36) 

(2.37) 

(2.38) 

(2.39) 

(2.40) 

(2.41) 

(2.42) 

(2.43) 

Solving Eq.(2.38) for npl, we find that 

npl = A(P1 nl) 
	

(2.44) 



w )1  v. "8' ke o 
(2.46) 

where 

X — 	1 	 (2.45) 
[(kilk2x0)  t "1] 

)tr is a dimensionless frequency variable given by 
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The dimensionless, frequency dependent quantity Xis therefore, from 

Eq. (2.44), the ratio of the fundamental frequency component of charge 

bound in the neutral pairs to the fundamental component of free charge 

arising from such pairs. 

To solve for the x dependence of n, and pl  we now substitute 

Eqs. (2.40) and (2.46) into Eqs. (2.36) and (2.37). 

terms, the results may be written as 

d2p1 = allP1 

dx2 

2 d 
nl

=  a21p1 a22n1 

dx2 

where 

all 	= 2 (MA) 2  [i+i (lt ) )1] 

a12 = 2(M/L)2  [144XV] 

After collecting 

(2.47) 

(2.48) 



8 21 = 2(M/L)2E-1+iX4 
a22 	2(MA)2[1+i(1+A )95] 

and (M/L)2  = 21T ax= 27re2x0  

KD 	KkT 	 (2.49) 

= A = D 	 (2.50) 
D' 

— Kl4 
op 	

(2.51) 
4TreX  

The Einstein relation A = A' IT  e has been used in Eqs. (2.49) and 
D 	D' 	kT 

(2.50). Y is another dimensionless frequency variable connected with the 

motion of the vacancies. 

The characteristic equation associated with Eqs. (2.47) and (2.48) is 

easily solved. After simplification, its roots irt  are given by 

(e)2  = 2(M/L)2  [1+i(1+ /1) 1+ 

f

i-P,h1 2  - (1+2X) [(/-2:2)V1 2  - iX (14)41 
	

(2.52) 

There are thus four roots, and n1  and pl  will be given by the sum of 

four terms each of the form exp (px). Considerable simplification is 

. produced however when the symmetry of the problem is taken into account, and 
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it is seen that ni  and pl  must be odd functions of x about the centre of 

the crystal at L/2. They may therefore be written as 

p1 =B+sinh[r+(x-L/2)]+B-sinh(x-L/2)] 	(2.53) 

n, = A+sinhir(x-L/2)] 4 A-sinb, F(x-L/2)] 	(2.54) 

where A% A-  B+, and B are completely defined by Eqs. (2.40)-(2.43), 

(2.47) and (2.48). 

The current entering and leaving the crystal may now be computed and 

used to evaluate the complex admittance of the whole crystal considered as 

a lumped circuit element. 

The current density j(x) within the crystal will then be given by the 

sum of a displacement term and two convection terms arising from the motion 

of the vacancies. 

j(x) = K.3E + epx0E, - D.dp1  4 p'x0E1  + D'.dnii (2.55) 

Orr at 	dx 	dx 

The total current density J1  flowing into the crystal is obtained by 

taking a space average of j(x) over the length of the crystal. 

Ji  = Y1V1  = iwKV1  + e (ii+)i')x0V3.  
47r L 

 

- 	D [pi(L) -p,(0).] +D' nl(L)- (0) (2.56) 
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The admittance/cm.2, Y1  

capacitance/cm.2, Cg  of the 

motion and terms coming from 

is made up of terms arising from the normal 

crystal in the absence of macroscopic charge 
, 

the space-charge parallel capacitance/cm.
2 
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and conductance/cm.2, Cp  and G respeciOely. We now find Y , the 

admittance/cm.2  due to space-charge - effects by substituting Eqs. (2.53) 
and (2.54) into (2.56). 

Yp  =-e(p +}e)x0 	Tfxog G
P 
 + iwC p  (2.57) 

L 	L 

where Z LPAII  (1 - 1) sinh11+  - (1 -.1.) sink ! 
07-  

71)  ( 41-2(1+  
7+  \Ali 

cosh + -sinh 71+) 

2, Cr =4 cosh 	+ 1j-cosh7- 

- l -1)( 	-2( -  cosh r -sink?) 
7-  Iffii 

7- A
+ 

B+  
= 	_-A+ .  

13- 	A 



Cg  = K 
4111 

(2.59) 
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Eq. (2.58) is a very complicated complex, though general, formula 

for G and C , but we are interested only in the case where the anion 

vacancies are appreciably more mobile than the cation vacancies (as predicted 

for thallous chloride) i.e. where 95 is large (,00). Second and higher 

order terms 

(p1)2 

(c)2 

= 

= 

may then be neglected on expanding Eq. (2.52) which gives 

00 	 (2.60) 

2(14/02(14)(1+i0 	 (2.61) 

where S = A i.e. the ratio of the fundamental frequency component of 
1+A 

charge bound in neutral pairs to the fundamental component of total charge1  

free and bound. From Eq. (2.61) therefore 

= m{+(i+ 8 )(14-iv)] 	 (2.62) 

For arbitrary dissociation, when. 8 may vary from 0 to 1, the 

expressions for C and G resulting from Eq. (2.58) are 

C 
p 

Co  Rea? — tanh)?  

70—coth Rio 	 tanh 

(2.63) 

  



	

— Y co, Imag. 	— tanh —1 

tanh + 

(yocoth 70  — 1)C g  

Goo  = einc 	— 1 iao  	) 

= Wo for large 0 

L 

(2.64) 

(2.65) 

(2.66) 
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710  is the value ofi when Y = 0. It is equal to M for small dissociation 

(5 = 1). Co is the zero frequency limit of C and Geo is the limiting 

/ value of G of very high frequencies i.e. the normal ohmic conductance/cm.2  

of the crystal which would be obtained at all frequencies were the 

electrodes not blocking. 

For the practical case where C pi;1020) t;10-3  and 14%7:104, Eq. (2.63) 
—P. 

reduces to 	Cg 

C = g 

Cg 	1157+ S YY 2  

Using Eqs.(2.51) and (2.66) we then obtain 

Cpl 
— 	

4 ,,C 	— 	G kT 	1 
• — 

(1+ 8 )Ke2Tr 3f4  xo 

(2.67) 

(2.68) 

4 cc, 10 	1 	 (2.69) 
• •••••••• 

(3.4. S )Ke2w3f4L4 xo 



with cam, the specific conductivity, equal to LGcc  and 0.)=. 2Trf. 

2.2.2. The Enthalpy of Formation of a Schottky Defect  

The equilibrium defect concentration xo  varies with temperature as 

exp — 1/Hs where AH. is the enthalpy of formation of a Schottky pair. 
2kT 

This quantity is therefore obtained by plotting log ---- against cp2 

ifl under conditions where the restricted validity of Eq. (2.68) is assured. 

The three principal factors resulting in deviation from this model are 

listed below. 

(i) Although dissociation is normally considered to be small or 

complete, the temperature and frequency dependence of S is unknown. 

(ii) The electrodes are not completely blocking. This may be dealt 

with theoretically using the concept of a blocking parameter, as did 

Jacobs et al., but the inevitable electrolysis may completely alter the 

nature of the electrode and give rise to experimental irreproducibility. 

(iii) The contribution of the cation vacancies may become appreciable 

as the temperature is raised. 

Nevertheless it should be possible to work in certain temperature and 

frequency ranges where these three effects, in turn, may either be 

neglected or assigned a numerical degree of importance. 
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CHAPTER 3 



EXPERIMENTAL PROCEDURES  

3.1. CRYSTAL GROWTH 

. 	For the purpose of investigating the electrical conductivity and space- 

charge polarization effects in ionic systems, large single crystals of pure 

material are essential. Such crystals may be grown from solution, the 

vapour or the melt but, in general, sizeable crystals are most easily 

obtained by growth from the melt.63 This process reduces the possibility 

of impurity inclusion since, other than the pure material, no substance, 

such as a solvent or carrier gas, is required to be present during the 

actual crystal growth. In addition the passing of a solid/melt interface 

throughout the length of the material effects a single zone-refining pass 

which may reduce the impurity level in the central portion of the material 

by at least one order of megmitude64. 

The Bridgman65 method which involves slowly lowering the melt, 

contained in a sealed ampoule, through a sharp temperature drop across the 

melting point of the material was found to be very suitable for the 

materials being studied. The conical tip of the ampoule preferentially 

selects one of the seed crystallites first formed which subsequently 

finishes the single crystal. 

A Bridgman furnace was therefore designed and constructed to operate 

most favourably in the temperature range, 600°K. -- 800°K., which includes 
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the melting points of thallous chloride (703°K.), thallous bromide (733°K.), 

and lithium iodide (719°K.). 

3.1.1. The Bridgman Furnace  

The furnace is described in Fig. (3.1), but the more important features 

are listed below. 

(i) The inner heating coil is wound differentially with a large number 

of turns per unit length at the baffle. This enables us to keep the upper 

half of the furnace at a much higher temperature than the lower half, 

providing a large heat input drop across the baffle. 

(ii) The aluminium disc on the baffle ensures a horizontal isotherm 

at the upper surface of the baffle. 

(iii) The baffle itself is made of1P"Sindanyo' (thermal conductivity 

0.0005 cals./cm.3/aK.). The temperature gradient of the baffle can 

therefore be maintained at ,,, 35°K./cm. 

(iv) The over-all temperature of the furnace is controlled to within 

0.2°K. by an A.E.I. platinium resistance thermometer controller, type 

RT3/R 14k.2, coupled with an. A.E.I. thyristor, voltage-stabilized regulator, 

model RS4XVI. The proportion of current fed to the three separate furnace 

windings is regulated by air-cooled rheostats in series with the windings -

see Fig. (3.1). 

(v) Lowering of the ampoule, which must be uniformly slow, is achieved 

by use of aepaded pulley and a suitably geared synchronous motor. This 
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arrangement provides lowering rates of 2, 6, 10, and 12 mms./hour. 

3.2. MATERIAL PREPARATION  

Prior to crystal growth, all material must be carefully purified and 

degassed. The procedures involved were varied from one material to 

another and between samples of the same material: they are outlined in 

this section. 

3.2.1. Thallous Chloride 

This poisonous, light-sensitive, material has an unusually high 

vapour pressure (1-2 mms. at 700°K.)66  at temperatures approaching the 

melting point. The Bridgman technique, with its sealed ampoule, is 

therefore especially suitable for growing single crystals of thallous 

chloride. In addition, the high vapour pressure indicates that 

sublimation may be used for purification purposes. It may also be 

purified by recrystallization from water (3.2 gms./l. at 20°C. : 19.7 gms./1. 

at 100°C.)67  or dilute hydrochloric acid. 

EXPERIMENTAL 

Thallous chloride of nominal purity 5N with respect to foreign cations 

was recrystallized twice from de-ionized water, dried over phosphorus 

pentoxide, and subsequently outgassed in a pyrex ampoule at 600°K. in a 

hard vacuum. Other samples were prepared similarly by recrystallization 
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from dilute hydrochloric acid, instead of water, or by direct sublimation 

of the outgassed starting material. The ampoule was then sealed off under 

vacuum and introduced into the upper biif of the Bridgman furnace where 

it was maintained at a temperature 50°K. above the melting point of the 

material in order to homogenize the melt. It was apparent in trial 

samples that the viscosity of the melt was quite high as small bubbles 

resulting from inadequate outgassing of the starting material were unable 

to rise quickly enough to the surface and became trapped in the ensuing 

crystal. After 12 hours, therefore, the ampoule was lowered at 6 mms./hour 

through a temperature drop across the baffle of 750°K./680°K. and into 

the cooler annealing zone. 

The glass-clear, colourless, monocrystalline boules so obtained were 

machined on a lathe into right cylinders of height 5 - 8 mms. The origin of 

every sample investigated is shown in Table (3.1). 

Sample Recrystallization Outgassing °K Sublimation 

TC-1 H2O 300o  - 600°  - 

TC-2 H2O 300°  - 600°  - 

TO-3 600°  YES 

TC-4 - 600°  YES 

TC-5 HC1 300o  - 600°  - 

TO-6 HCl 300o - 600°  YES 

The preparation of thallous chloride samples 

Table (3.1) 



Electrodes were applied to the plane parallel faces with either a soft 

graphite rod or an alcoholic colloidal graphite 'dag'. The material was 

handled throughout in the dark or in a subdued red light. 

3.2.2. Thallous Bromide  

This material is extremely similar to the chloride, both in its 

physical and chemical properties, but it is insufficently soluble in hot 

water for fractional crystallization to be an effective means of purification. 

EXPERIMENTAL 

5N pure thallous bromide, outgassed at 600°K., was sublimed into a 

Bridgman ampoule and passed through the furnace using a similar procedure 

to that employed for the chloride. The lowering rate was 6 mms./hour and the 

temperature drop at the baffle was shifted to 785°K./700°K. The clear, pale 

yellow, monocrystals were again machined on a lathe to provide right 

cylindrical discs. Both TB-1 and TB-2 were prepared by this technique and 

were subsequently given colloidal graphite 'dag' electrode coatings. 

3.2.3. Lithium Iodide  

In contrast to the thallous salts, this material is extremely difficult 

to handle on account of its chemical nature. It is highly deliquescent, but 

may be obtained commercially as an approximate trihydrate with an impurity 

level of less than 100 p.p.m. with respect to metallic cations. Recrystallization 
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of this reagent grade material as a means of purification is unsatisfactory 

because lithium iodide is extremely soluble in water (>3 Kgms./1. at 30o068  

and all common polar organic solvents. Lithium iodide is also chemically 

unstable in aqueous environments. Thus it decomposesinmoist air at room 

temperature, liberating free iodine, and is unstable even in dry air at 

temperatures much above its m.p. (719°K.). This means that its water of 

crystallization must be removed under vacuum at as low a temperature as 

feasible, otherwise the inevitable introduction of large amounts of oxide 

and hydroxide make subsequent purification tedious, if not impossible. The 

stoichiometric trihydrate, in fact, melts at about 350°K., losing water at 

the same temperature forming the monohydrate. The final molecule of water 

is not liberated, at atmospheric pressure, until the temperature is raised 

to 570oK67. Since the trihydrate is initially powdered to facilitate the 

loss of water, care must be taken to ensure that the material is not fused 

during the dehydration. 

Several methods are available for crystal growth from the melt but 

the Kyropoulos69 and Czochralski70 methods, which also involve critical 

seeding techniques, together with the Stockbarger71 method were all found 

to be unsuitable since the crystals have to be grown in open capsules which 

facilitates the decomposition of the melt. The Bridgman method, on the 

other hand, enables the growth ampoule to be sealed off under vacuum, thus 

limiting the loss of iodine to the small volume within the ampoule. It is 

essential, however, with this method that the ampoule be made of an easily 
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worked material since it must be provided with a conical tip for self-seeding 

and also that the crystal must detach itself cleanly from the walls of any 

container in which it is grown. This is especially important with lithium 

iodide since the crystal cleaves very readily in the (100) plane. 

Borosilicate glass satisfies the first condition, but it is attacked by 

lithium oxide. It is therefore important that the melt is oxide-free and 

that the glass ampoule is carefully outgassed - whereupon the crystal of 

lithium iodide detaches itself quite readily upon cooling, without 

internal cleavage. 

It has often been the practice to coat the inner walls of growth 

capsules with a material such as graphite to prevent sticking63, but the 

danger of such a layer cracking and flaking, causing subsequent polynucleation, 

is an obvious one. Such coatings were therefore avoided in this work. 

ECPERDIENPAL 

Lithium iodide trihydrate was finely powdered in a dry-box and 

introduced into the purification apparatus - Fig. (3.2) - where it was 

degassed at 320°K under a pressure of 103  mms. Hg for 20 hours to convert 

the material into the anhydrous compound. The temperature was then raised 

slowly to 500°K. and the final traces of water removed completely over a 

period of several hours. The anhydrous lithium iodide was then heated to 

50°K. above its m.p. and a dry gaseous mixture of hydrogen and hydrogen 

iodide was bubbled through the melt for 2-3 hours. 
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The hydrogen iodide, prepared by warming a concentrated 'Analar' 

solution of hydriodic acid, was carried in a current of hydrogen and dried 

through phosphorus pentoxide. Moisture was excluded at the outlet by a 

second phosphorus pentoxide column and a silicone oil trap. 

The purification apparatus was then turned through 900  thus enabling 

the capillary section to be heated and further outgassed in the tubular 

furnace. The purified melt was run into this section through the glass-

fibre filter paper (Whatman G/A), subsequently undergoing capillary 

filtration and finally solidifying in the upper half of the Bridgman ampoule. 

In order to leave the lower section untouched prior to crystal growth a 

constriction was made in the ampoule to ensure solidification of the melt 

in the upper section. The ampoule was then evacuated and sealed. 

The crystal was grown in the Bridgman furnace with a temperature 

differential at the baffle of 7800K./700°K. and a lowering rate of 6 mms./hour, 

which was found to be the most practical and effective rate for this material. 

This technique furnished solid cylindrical boules, sometimes only 

bicrystals, which measured some 16 mms. in diameter and 30-40 mms. in length 

and which were capable of being cleaved to provide cuboidal single crystals 

with dimensions of about 5 EMS. These crystals were absolutely clear and 

colourless. 

Electrodes were applied to these crystals with a soft graphite rod since 

all good conductivity graphite 'dags' are dispersed in hydrophilic solvents 

and are therefore unsuitable. 
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Both the crystal-cleaving process and the electrode application were 

carried out under a dry nitrogen atmosphere in a glove-box. 

3.2.4. Impurity Doped Lithium Iodide  

In order to make a systematic study of impurity-controlled conduction, 

attempts were made to grow lithium iodide crystals containing divalent 

magnesium in solid solution. The simplest method of achieving this would 

be to add magnesium iodide to the lithium iodide before the dehydration 

procedure, but much of the magnesium reacting with the water present, 

precipitates from the crystal as the oxide. If large quantities (2-3 mole e) 

of magnesium iodide are used unclean crystal growth ensues, resulting in 

polycrystallization. Ideally therefore, anhydrous magnesium iodide needs 

to be added to molten, oxide-free lithium iodide, but experimentally this 

is extremely difficult to achieve on account of the highly deliquescent 

nature of both materials. Several crystals, however, were obtained by 

adding dehydrated magnesium iodide octohydrate to anhydrous lithium iodide 

and passing hydrogen iodide through the melt in the same way as for the 

undoped crystals. The anhydrous lithium iodide was from unused sections 

of previous single crystals. 

The origin of every lithium iodide crystal investigated in this work 

is outlined in Table (3.2). 



Table(3.2) 

Origin of lithium iodide samples 

Sample 
crystals 

Starting 
material  

Added to 
starting 
material 

Dehydration and 
outgassing under 
10-4 mms. Hg 

112/11i  
passage 

LI-1 (A-B) Powdered 
LiI.3H20 

 - Overnight at 325°K., 
slowly to m.p. 

No 

LI-2 (A-B) Powdered 
LiI.3H20  

- Overnight at 325°K., 
slowly to m.p. 

2 Hrs. 

LI-3 (A D)Cleavings from 
LI-1 and LI-2 

- 3 Hrs. at 325°K., 
slowly to m.p. 

2 Hrs. 

LI-DA(1-14) Cleavings from 
crystals grown 
as LI3 

0.1% MgI2  3 Hrs. at 325°K., 
slowly to m.p. 

3 Hrs. 

LI-DB(1-3) Cleavings from 
crystals grown 
as LI-3 

1% MgI2  
. 

3 Hrs. at 325°K., 
slowly to m.p. 

3 Hrs. 
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3.3. ANALYSIS OF SAMPLES  

Trace elements in the thallous halides and undoped lithium iodide 

were determined by emission spectroscopy. The magnesium in the doped 

samples was also determined by this method, but in addition a volumetric 

method was employed, using sodium E.D.T.A. as titrant and Eriochrome 

Black T as indicator, as this can detect magnesium in the presence of 

large quantities of alkali metal ions. Divalent and trivalent iron were 

estimated colorimetrically using ammonium thiocyanate. 

3.4. THE SAMPLE MEASUREMENT CELL 

All electrical measurements were carried out in the cell described in 

Fig. (3.3). Since both thallous chloride and thallous bromide have vapour 

pressures of several mms.Hg at the melting point, the cell was constructed 

with minimum void space thus reducing sublimation to neglible proportions. 

This was facilitated by the use of a machinable grade of densified boron 

nitride as the insulating sleeve. In order to eliminate stray capacitance 

from the measuring circuit the Pt/Ptlgith thermocouples were insulated 

from the graphite block electrodes by thin pyrex sheaths. The entire 

electrode/sample/sleeve system was then encased in a solid copper body 

which served the dual purpose of guard electrode and temperature equalizer.' 

The over—all temperature was controlled to within 0.1°K. by a Philips 

single point recorder, type PR2210 A/21, adapted for use as an automatic 
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temperature controller. The input to the relay was given by a chromel/ 

alumel thermocouple, embedded in a glass pod (for electrical insulation) 

in the copper body of the cell, in series with a transistorized saw-tooth 

microvolt source, which provided proportional control in the range t 5°K. 

about the required temperature. 

In operation with the thallous halides the cell was first evacuated 

to 103 mms. Hg, then flushed and filled with dry argon before it was 

heated. This precaution effectively inhibited sublimation even at 

temperatures only 10°K. below the melting point. 

However, the deliquescent nature of lithium iodide necessitated 

outgassing the cell overnight at room temperature before slowly heating 

the sample still under hard vacuum to 550°K. The cell was then flushed 

several times, by evacuating and re-filling with dry argon, before being 

finally filled to one atmosphere pressure. Subsequently throughout the 

electrical investigation the cell was evacuated for one minute every hour 

and re-filled with dry argon. 

3.5. CONDUCTANCE AND CAPACITANCE MEASUREKENTS  

The conductance and capacitance of samples were measured as a function 

of frequency normally between 500 and 18000Hz., but exceptionally to 

200 KHz., at temperatures ranging from just above room temperature to just 

below the melting point of the sample, and also as a function of temperature 

at selected frequencies. 
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In order for equilibrium to be attained, readings were normally taken 

at hourly intervals, but in lower temperature annealing studies with 

thallous chloridel measurements were spread over several days. 

A. Marconi R.C. oscillator signal generator (TF 1370) supplying 

3 my. - 30 V. injected a sinusoidal voltage into high (B601) and low 

(B221) frequency Wayne-Kerr conductivity bridges with a Telequipment 

oscilloscope (D43) as null detector. The oscilloscope was initially 

employed to detect the presence of any harmonics, but once it had been 

shown that harmonics were not produced in the sample it was replaced by 

a General Radio frequency-tuned amplifier and null detector (1232-A). 

The Pt/Pt10Rh thermocouple outputs were measured on a Cambridge 

miorostep potentiometer. Throughout the temperature range of study the 

two thermocouples agreed to within 0.2°K. : the sample temperature was 

therefore taken as a mean of the two. 

All leads in the measuring circuit were carefully screened to 

eliminate any stray capacitance, and a common earth was employed for the 

complete electrical circuit which is represented diagrammatically in 

Fig. (3.4). 
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CHAPTER 4 



RESULTS AND DISCUSSION 

4.1 THE ELECTRICAL CONDUCTIVITY OF THALLOUS CHLORIDE 

The isothermal specific conductivity o-  displayed a weak frequency 

dependence, asymptoting to a high frequency limiting value ozo  in 

accordance with the space-charge model. In the most extreme cases studied 

the conductivity was constant to within 0.4 of the observed limit above 

15 KHz. and fell to about 0.9 c at 500 Hz. 

In addition to these measurements the conductivity was measured as a 

function of temperature at a number of fixed frequencies. A selection of 

these data for the samples listed in Table (3.1) is plotted as log o T 

against 1  in Fig. (4.1) at 20 KHz. where the conductivity is essentially 

01 at all temperatures. 

4.1.1. The Intrinsic Region 

1 For freshly grown crystals the log 40-00 T against y plot is linear from 

330°K. to about 600°K., above which temperature the line curves smoothly 

upwards. Accordingly between 330°K. and 600°K. the intrinsic conductivity 

may be represented by 

(7-T =, cr-  exp -PH co 	1 
kT 

(4.1) 

withAIH
1 
 = - 0.750 ± 0.005 eV. in excellent agreement with Friauf's value53 
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of 0.76 eV. In addition, the absolute value of the conductivity 

a-  (575°K.), 4.06 x 10-4ohm-lcm.-1, lies close to Friauf's value of 

3.8 x 10-40hm-lcm.-1 	Table (la) - emphasizing the reproducibility 

that may be obtained with pure single crystals. 

The linearity of the plot in this region indicates the presence of 

only one mobile charge carrier. Were this not so and two mobile carriers 

contributed to the conduction, the activation enthalpy (Alif 	AHm) for 

one carrier would necessarily equal that of the other. 

All samples, TC-1 to TC-6, provide conductivity curves which are 

superimposable within experimental error throughout region I. Such 

reproducibility is uncommon in this field but was in part made possible in 

the present work by the use of large single crystals whose dimensions 

could be accurately measured with a micrometer. Discrepancies of up to 

1014 amongst different workers investigating the same material have, in 

general, been ascribed both to this geometric factor and to the varying 

electrode coatings employed, impurity content not being of prime importance 

in region I. In order to assess such electrode effects, the conductivities 

of some samples were first measured without any conducting coating, and 

then re-measured with graphite 'dag' electrodes. These graphite coatings 

were then removedby machining about 1 mm. off each parallel face of the 

sample disc. Further electrodes were then applied by pencilling with a 

soft carbon rod and the conductivity re-determined. In all cases the 

specific conductivity agreed to within 	- see Fig. (4.1). Active 
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metallic coatings, such as silver and gold, were avoided in order to 

maintain the blocking electrode conditions vital for capacitance studies. 

4.1.2. The Extrinsic and Association Regions  

On ageing, through time and temperature cycling procedures, the samples 

appeared to develop characteristic regions II and III in the conductivity 

plots - the so-called extrinsic and association regions respectively. These 

regions were completely reproducible during heating and cooling cycles 

lasting for several days, but became more pronounced over a period of months 

when stored in the dark at room temperature in a dessicator. In Fig. (4.2) 

the time interval between measurements was varied from. 2 - 48 hours in 

order to detect any time-depPnaent annealing effects - there were none. 

Normally, after a change of temperature it was only necessary to wait for 

One hour before taking readings, this time interval being quite adequate 

for the attainment of equilibrium as evidenced by the absence of transients. 

Region II was in each case too short for a direct determination of the 

enthalpy of mobility of the charge-carrying species, but tangents drawn to 

the central portion of region II gave an upper limit of 0.45 eV. for Alim. 

Region III, however, is long and straight and is characterized by an 

enthalpy of activation ( Alia  + 	= 0.64 ± 0.02 eV. Since Friauf's 

diffusion data indicate that /he conduction is almost 
DCl 

= 652 at 380°K. D'r 
Tl 

on ageing the samples have acquired a polyvalent anionic impurity which, 
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at region III temperatures , it is probable that 



being only slightly soluble in the host, tends to form complexes with 

vacant anion sites. We suppose this impurity to be the oxide ion. 

Spectrochemical analyses of the samples indicated a cationic impurity of 

less than 5 p.p.m. but detection of the small amount of oxide required to 

be present was not practicable. If we take aHm(av), calculated later, as 

0.09 eV. we obtain a value of 0.55 eV. for the binding enthalpy of an. oxide 

ion - vacant anion site complex which is typical for a large ion52. 

Deliberate doping with oxide7,33,72 in other crystal systems has 

not proved particularly successful because of the difficulty in estimating 

02- apart from OH-. In addition to this, any reluctance on the part of 

the oxide ion to pass into substitutional solid solution, which is evident 

in potassium chloride?, would immediately reduce the effectiveness of this 

approach. This may well be the case for thallous chloride as Christy58 

has shown that the sulphide ion S2 , which resembles the oxide ion both 

physically and chemically, is only sparingly soluble in the host thallous 

chloride lattice. Christy73 also claimed that polyvalent cations were 

equally insoluble in this lattice and although Hauffe and Griessbach-Vierk56  

found that the conductivity of lead-doped thallous chloride decreased with 

increasing impurity concentration, they reported no region II and their 

results, obtained as they were on pressed material, indicate that only a 

fraction of this amount was, in fact, incorporated substitutionally. 

Hoodless21 has also experienced difficulty in dissolving polyvalent cations 

in cesium chloride where the transport number of the cation is approximately 
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0.4, obtaining only a short irreproducible region II. This restricted 

solubility of most impurity ions in the cesium chloride structure 

rules out accurate analysis of the extrinsic region but provides an 

intrinsic region that is long and reproducible. 

Hauffe's and Friauf's data, together with our vacancy-oxide association 

can therefore be explained if anion vacancies are the predominant charge 

carriers in thallous chloride. The presence of such carriers is confirmed 

in the next section by diffusion correlation arguments. 

4.2. SELF-DIFFUSION IN THALLOUS CHLORIDE 

Friauf57 has measured the temperature dependence of the self-diffusion 

coefficients of the anion and cation in thallous chloride using radioactive 

D1. and 2°7Tl. His results are illustrated in Fig. (4.3). The anion and 

cation are associated respectively with activation enthalpies AHD  of 

0.76 eV. and 1.07 eV. respectively, whereas 0, the ratio of anion mobility 

to cation mobility, is given by 0.1124 exp ( 3-p. which means that the 

thallium ion carries about 10J of the total conduction current near the 

melting point. This strongly suggests Schottky disorder since the presence 

of interstitial ions on both sub-lattices, or even one sub-lattice, is 

extremely unlikely as pointed out in section 2.1.3., on account of the large 

size of both ions. 

Frenkel disorder is more favourable in structures, such as the silver 

halides, where the co-ordination number of the cation is larger and the 
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greater radius ratio of the two ions is capable of providing room for one 

type of ion in an interstitial site on the conjugate sub-lattice. Thus 

cesium chloride21, cesium bromide74 and cesium iodide74, which possess the 

simple cubic structure, all exhibit Schottky disorder with the transport 

number of the cation about 0.4 in each case. 

The greater mobility of the anion may seem surprising in view of the 

relative sizes of the ions. (The appropriate Goldscmidt radii, in 

Ingstrim  units, are57  Cs+  = 1.65, T14.  = 1.49, Cl-  = 1.81, Br-

1.96, and 1 = 2.20). In fact, the coulombic terms at the saddle point 

involved in a jump into a vacancy are the same to a first approximation, 

no matter which ion is jumping, as these are determined for both anion and 

cation in the cesium chloride lattice, by the interactions of the jumping 

ion, positioned at a face-centre on the conjugate sub-lattice, with the 

nearest neighbour ions of opposite charge which are situated one each at 

the four corners of the same face. Such a configuration involves 

considerable distortion of the lattice and the more important factor, 

therefore, is probably the relaxation and polarization of the surrounding 

ions and the polarizability of the jumping ion itself. We shall return 

to this problem when discussing the conductivity of thallous bromide. 

4.2.1. The Calculation of Do- 

The sum(DTi* 
 + 
	_ of the cation and anion tracer diffusion 

coefficients is compared in Fig. (4.4) with the theoretical value Da.. 
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this sum calculated from the present conductivity results using Eq. (2.23). 

tor = Ire2 

kT 
a- 

The upward sweep of the conductivity plot above 6000K is then seen to be 

a direct consequence of the increasing cationic transference number. 

Vacancy motion on a simple cubic lattice is characterized by a jump 

correlation factor of 0.653 and a displacement factor equal,  to 1 ; thus in 

( e 
the ideal case for Schottky disorder the values of T14' + 41— 	should 

coincide with the values of 0.653 Da  asconduction in thallous chloride is 
59 

known to be purely ionic giving fc  = 1 as well. As seen in Fig. (4.4) 

the agreement is remarkably good, and may be taken as confirmation of the 

vacancy mechanism, but as the temperature is raised the correlation factor 

increases towards 0.73 at 680°K. This may in fact be a consequence of the 

need to extrapolate the diffusion data, but a realistic explanation of 

this observation is the formation of neutral vacancy pairs which can 

contribute to diffusion but not to the conductivity. On the basis of this 

explanation the product of the concentration times the mobility of these 

vacancy pairs evidently increases with temperature, but the terms can not 

be separated with our present information. This is an obvious pitfall, 

therefore, in separating the intrinsic curve into anionic and cationic 

components alone, as Dawson and Barr75  have done, in order to determine 

the ion transference numbers. 
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Ionic conduction in thallous chloride is thus due to the presence of 

Schottky defects with the vacant anion site the predominant charge carrier 

at all temperatures. In this material therefore 

"Hl = "Hf(av) 	"Hm(av) 
- 0.755 i 0.005 eV. (4.2) 

4.3. THE ELECTRICAL CONDUCTIVITY OF THALLOUS BROMIDE  

The conductivity of thallous bromide is shown in Fig. (4.5) to be 

lower than that of thallous chloride at all temperatures, although the 

shape of the log o-T against plot is very similar. Both samples, TB-1 

and TB-2, gave superimposable results in the long intrinsic region and 

provided values of the conductivity which were reproducible within 

experimental error as with thallous chloride. Region I appears to be 

linear over a wide temperature range in support of Hermann's conclusion 

that the bromine ion is the dominant charge carrier. In fact this 

linearity appears to extend to a higher temperature than with the chloride 

indicating a higher value of 0 =( Panion at all temperatures. 
}'ratio 

is 

`completely analogous to the situation in the cesium halides where the 

transport number of the anion at any particular temperature increases as 

one passes from the chloride -4 bromide -4 iodide. In addition, 

0-(500°K.) = 2.0 x 10-5ohm-lcm.-1, and the region is characterized by an 

activation enthalpy AH, = 0.75 eV. This latter value agrees extremely 
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well with Phipps and Partridge's55 value of 0.75 eV., but the value of o-  is 

twice that obtained by Phipps and three times that by Hermann60, both of 

whom used pressed material. As with thallous chloride our results 

emphasize the greater reproducibility amihdghermore accurate, values of 

the conductivity which may be obtained with single crystals. 

The activation enthalpyAlli  is identical to that of the chloride, 

indicating a similar conduction mechanism. By analogy with the cesium 

halides, therefore it would appear likely that Schottky disorder exists 

in thallous bromide with the bromine ion vacancy as the dominant charge 

carrier. 

Region II is again too short for direct analysis although it provides 

an upper limit of 0.40 eV. forAlim. Region III is associated with an 

enthalpy of 0.66 eV. which is again very close to that for the chloride 

and not unexpected in view of the fact that it probably represents the binding 

energy of an oxide ion-anion vacancy complex in a similar environment. 

In the absence of self-diffusion data for thallous bromide it is 

difficult to carry the argument for Schottky disorder any further, but a 

direct comparison of the conductivity of the bromide with that of the 

chloride helps to emphasize the important factors involved in vacancy 

motion and clarifies the expected close relationship between the two 

materials. 

4.3.1. The  Conductivity Relation 
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ion vacancy in thallous chloride, calculated from the present conductivity 

results, is equal to 0.755 eV. which agrees very closely with the value of 

0.76 eV. calculated from Friauf's diffusion data in Fig. (4.3). Intrinsic 

conduction on thallous bromide is also associated with an activation enthalpy 

of 0.75 eV. which means that, 

+AHm(av)] T1C1tHf(av)  + AH [6Hf(av) 	 — m(a)] T1Br 	(4.3) 

if we assume that the vacant anion site is the predominant charge carrier 

in thallous bromide. 

Boswarva22 has calculated the energy of formation of Schottky defects 

in the cesium halides, all of which except the fluoride possess the simple 

cubic structure of the thallous halides. 	He considered in detail the 

effect of various elastic and polarization terms on the final value Alls  

of the Schottky defect formation energy, but atypical set of values is 

given in Table (4.1) 

Crystal AHs  eV. 

CsF 1.920 

CsCl 1.337 

CsBr 1.267 

CsI 1.334 

Calculated energies of formation of a Schottky defect in the cesium halides.22 

Table (4.1) 



The values were calculated using the Born ionic model with a Born-Mayer 

repulsive potential, but included Brauer elastic terms and deformation 

dipoles. The important aspect of this table is that 1111s  is very similar 

for the chloride, bromide, and iodide, but is noticeably different for the 

fluoride where a different crystalline structure is known to exist. This, 

as Boswarva pointed out, is not brought about by a coincidental balancing 

of the terms that make up Alls  for the chloride, bromide and iodide, but 

rather by a marked similarity between these three substances for each 

individual term that together determine 40is. The thallous ion is 

comparable in size to the cesium ion and a similar trend is to be expected 

in the thallous halides. 

If A Hs(T1C1) AS A Hs(T1Br),, and AH f(ev) :e,A Hf(av), as. indicated by 

Boswarva, then 

AH f(av)T1C1 INH f(air)T1Br 

It now remains to explain why Alam(av)T1C1z6Hm(av)T1Br. 

It has already been mentioned that for a vacancy mechpnism the 

polarizability of an ion is important in deterMining its mobility. The 

polarization energy contributes a positive term to the jump activation 

energy, for the ion in the ground state is appreciably polarized by the 

electric field of the neighbouring vacancy, whereas there is no polarization 
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in the activated state since the field is zero. Hence ions of small 

polarizability are favoured by this term. Since the polarizabilities are 

in the order T11›. Br—>. Cl— 76, the jump preference is in the reverse 

order, which would explain the incongruous size/mobility relation. It is 

evident, however, that this is only a partial, tentative explanation and 

detailed calculations are needed to make accurate predictions. 

The displacement of thallium ions at the saddle-point would tend to 

favour the smaller chlorine ion in preference to the bromine ion, but on 

the other hard there would be a larger relaxation cum polarization energy 

compensation for the newly formed vacant anion site in the case of the 

latter. 

However, the energy of activation for an ion jumping into a vacancy 

is determined by the energy change in the surrounding lattice as a whole 

when the ion moves from its initial site into the saddle-point. The 

calculations of Boswarva22  on the cesium halides indicate that this energy 

is much the same whether a chlorine ion or a bromine ion is jumping. Close 

agreement is therefore to be expected for the anion diffusion activation 

energies of the two thallous halides, but the identity of the two values 

is probably coincidental. 

The absolute value of the conductivity, nevertheless, is lower for the 

bromide in the intrinsic range and must be a direct consequence of a lower 

pre—exponental mobility factor. 
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where Y is of the order of the mean vibrational frequency of an ion about 
.1.1)/E- 

2Tr M • its equilibrium site given by the simple harmonic expression 

However, this rigorous dependence on Ri  is seldom obeyed even for two 

94 

4.3.2. The Ion Mass Effect  

o-(T1C1) 
The ratio o-(T1Br) % is about 2.37 instead of 1.51 as calculated 

from classical rate theory23, assuming the jump distance to be approximately 

the same for both materials, where the jump probability w is inversely 

proportional to the square root of the jumping mass M. According to 

Eq. (1.9) 

w = y exp - AG ni  
kT 

isotopes and for the interstitial diffusion of hydrogen and deuterium 

in tantalum77  the conductivity ratio is found to be 80 instead of 

although the jump activation energy is the same. Nevertheless, the mass 

effect goes some way towards explaining the reduced conductivity in the 

bromide as compared with the chloride. 

4.4. SPACE-CHARGE POLARIZATION IN THALLOUS CHLORIDE  

. The space-charge model of Chapter 2 was developed for the situation 

where the anion vacancies are, at least, 30 times as mobile as the cation 

vacancies which is the case in thallous chloride up to 600°K. Accordingly, 



Eqs. (2.63) and (2.64) are applicable to this substance at temperatures 

below 600°K and we have 

C.P = Cg  Real pi-  - tanhl 	(2.63) 

tanhil-  + iv 

and Gp ::4G00 IMag. 7/ ".. - tanhl  

[ 

(2.64) 

tanh 1 + iY ii 

 

However, these equations themselves are complicated and they can only be 

simplified, as stated in Chapter 2, for the case where Y40.0 3 and 1.1;104. 

In addition, C 
P 
 /b
g 	

G is required to be <104  in Eq. (2.63) and /G <10-1  p op 

in Eq. (2.64) for all practical cases where these two ratios can be 

measured accurately i.e. where C
P 
 /Cg 1.. 2 and PG 

 
/

c''' 
 <0.9. The conditionsfor 

),FInd  Mare satisfied in thallous chloride at all temperatures above 450°K 

with the frequency of the applied A.C. field less than 10 KHz. However, 

the studies were limited to frequencies above 500 Hz. in order to avoid the 

spurious, low frequency, electrolytic effects described in the next section 

and the observed value of Gli/G00  never fell below 0.9, even in the most 

extreme cases studied. The frequency dependence of the conductivity was 

thus too weak for independent analysis on the space-charge model, according 

to Eq. (2.64), although the limited data are consistent with this model. 

C 
P 
 /b
g 
 , on the other hand, varied from 2 - 104 over the specified 

temperature (450°K. - 600°K.) and frequency (500 Hz - 5 KHz) ranges where 

the conditions for 0, and M are satisfied. The space-charge capacitance 
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Cp  = 	(14. )/ce2Tr3f4L4 2 
4 crco  kT 

• 

xo 

is therefore suitable for analysis on our model using Eq. (2.63).in its 

reduced form of Chapter 2, i.e. Eq. (2.69) below. 

(2.69) 

The space-charge capacitance C per unit area is plotted in Fig. (4.6) 
as a function of frequency at a number of temperatures. At higher 

temperatures C approaches the static field value Co as the frequency is 

reduced below 1 KHz. On the,other hand, as the frequency is raised and the 

temperature lowered the measured capacitance (C
P 
 + Cg) asymptotes to a value 

Cg  wholly consistent with the geometry and static dielectric constant 
= 31.9)78'79  of the crystal. This close agreement between the 

theoretical and experimental values of Cg  is encouraging in that it shows 

all spurious, stray capacitance to be absent. Accordingly in all 

calculations the observed capacitance is corrected for Cg  determined in 

this way, giving the true space-charge capacitance C . 

4.4.1. Electrode Effects on Capacitance  

During thermal cycling at low frequencies C dropped slowly whereas or 

remained unchanged. Jacobs49 et al. detected similar behaviour in 

potassium chloride and noted that the passage of D.C. through the crystal 

for several seconds could lower the measured value of the capacitance by 

a factor of two. The persistent application of low frequency (below 1 KHz.) 
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voltage must therefore be avoided. Even so C was found to decrease by 

about Y% during a heating/cooling cycle and was at least halved by D.C. 

This was presumed to be an electrode effect - possibly electrolysis - since 

by machining 1 mm. off each plane surface the original value of C , prior 

to the passage of D.C. and low-frequency currents, could be regained to 

within 5%, taking into account the reduced length of the crystal. Samples 

were therefore cycled once only before re-machining - all readings, except 

where stated, being taken during heating. 

The nature of the electrode surface was found to be extremely important 

since crystals with these surfaces roughened by carborundum paper gave 

irreproducible data for C , o-  being unaltered within experimental error. 

All crystals were therefore machined accurately parallel with plane polished 

surfaces. The capacitance data for samples with and without colloidal 

graphite electrodes then agreed to within 5%. 

Measurements of C were also taken with the sample under vacuum instead 

of one atmosphere pressure of argon in order to determine any vitiating 

effects due to surface moisture. Such moisture, by virtue of its 

conduction, would only slightly increase a-  but would reduce C substantially. 

No such effects were however observed, C being unchanged by evacuation, and 

argon was used throughout. 

Providing the foregoing precautions are rigorously observed therefore 

the measured value of capacitance is considered to be in error by no more 

than 1Q%. 
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'4.4.2. The Frequency Gradient  

The logarithm of C is plotted in Fig. (4.7) against the logarithm 

of f, the frequency (Hz.) of the applied A.C. field. These plots are 

apparently linear over wide temperature and frequency ranges, but C does 

of course approach Co  and zero for the two extreme cases already mentioned. 

The central regions of these logarithmic plots have slopes, or 'frequency 

gradients', in the range 1.6 - 1.75 for all crystals whereas Eq. (2.69) 

*predicts a value of 2. Nevertheless plots 	against f2 in the range 

8-16 Hz. are accurately linear, all passing through or near to the origin 

as shown in Fig. (4.8). As Jacobs50 pointed out, this is a better test 

of the f
2 dependence than the logarithmic display of Fig. (4.7) where, in 

fact, the plots show definite curvature and the inclusion of experimental 

points at the lowest frequencies, which as mentioned in the last section 

are liable to be low and more in error than those obtained at higher,  

frequencies, would account for a reduction in the 'frequency gradient'. 

Approximate values of xo, the chlorine ion vacancy concentration, 

may therefore be calculated from the slopes of the linear plots in 

Fig. (4.8) using Eq. (2.69) 
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2 
p 

cr kT 	1 

(1+ 8 )Ke2r3f4L4 xo 

(2.69) 

at a number of different temperatures in the range 450K.-600
o14 where the 
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validity of this equation is assured. 

The temperature dependence of xo, plotted as log xo against 
1

, then 

provides a preliminary estimate of)01I,./kavj'  the enthalpy of formation of 

the chlorine ion vacancy. This quantity however will be derived by a 

more rigorous graphical technique in section 4.4.5. 

4.4.3 The Length Dependence 

Normal geometric capacitance is inversely proportional to the thickness 

of the dielectric. Eq. (2.69), on the other hand, predicts that the space 

charge capacitance C should be inversely proportional to the square of the 

length L of the crystal. This prediction is tested in Fig. (4.9) where 

1 i — s plotted against L2 . The resulting trace is linear and passes 
p 

accurately through the origin in excellent agreement with the theory. 

4.4.4. The Voltage Dependence 

One of the conditions for the linearization of the differential equations 

governing the charge carrier concentrations in the space-charge model is 

that the applied voltage V1  should be small, and in any case crkT/e. In 

view of the fact that several assertions of this model are vindicated through 

the implications. of Eq. (2.69) it is interesting to examine the stringency 

of this condition. 

The neglect of harmonic terms is only justified, therefore, if V1  

X0.07 volts (at 600°K.) : at higher applied voltagei theory predicts a 
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V1
2 dependence for C . Experimentally, however, the oscilloscope reveals 

the absence of any harmonics and C is independent of voltage in the range 

30 mV. - 30 V. This is difficult to understand unless the linearization 

condition is unnecessarily severe. The assumption that the linearized 

equations are quite sufficient in accurately representing the situation 

in any circumstances is then supported by the absence of harmonics. 

4.4.5. The Determination of xo 

Within the approximations of the space-charge model it is not possible 

to compute xo  precisely as s is unknown and the exact nature of the 

frequency dependence is uncertain. This has already been discussed in 

section 4.4.2. where it was shown that a graphical technique could be 

employed to calculate preliminary values of xo  and Alif(av)  using Eq. (2.68) 

or (2.69). 

2 	
Go)4 kT 	1 

C = 	 

	

(1+ 8 )Ke2Tr 31.4 	xo  
(2.68) 

The frequency gradient', however, is independent of temperature within 

the limits of experimental accuracy and the numerical value of (1+ 6) lies 
I only between 1 and 2, which means that by plotting log 

TG
e --- 	against— 
( 0 2 	

T 

for a series of fixed frequencies we eliminate any effectsPon Alif(av) due 

to the uncertainty in the frequency dependence. 
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Linear plots are obtained in Fig. (4.10) between 475°K. and 600°K. in 

the frequency range 500 Hz. — 5 KHz. where Eq. (2.68) is valid. The slopes 

of these plots are identical as they should be if Eq. (2.68) is sound, 

giving a value of 0.68*0.015 eV. for the enthalpy of formation of.a 

chlorine ion vacancy, in good agreement with the value of 0.6510.05 eV. 

obtained by Christy and Dobbs58 from thermoelectric measurements. 

If we assume 40s 
= 22S.Hfk /av)'  we obtain a value of 1.36±0.03 eV. 

for the enthalpy of formation of a Schottky defect in thallous chloride. 

The 0.5, 1 and 2 KHz lines in Fig. (4.10) are equally spaced as 

predicted but again require a frequency dependence for C of 1.75 before 

coincidence is obtained. By assuming adherence to this dependence we can 

obtain values of xo which may be written as 

x
0 
 = exp (+QSs exp 	1.36 eV 

210 

where ASs, the en 
	of formation of a Schottky defect,lies in the range 

7.5 - 8.5 k compared with the value of 10.3 k obtained by Christy and 

Dobbs. On this basis the chlorine ion vacancy concentration, or Schottky defect 

concentration, is approximately 0.08 atomic % at the melting point. 

Using Friauf's value57  for 0, the ratio of anion mobility to cation 

mobility, of 0.1124 exp (3380)  and the present conductivity a-  and xo It T 
 data, we calculate the characteristic parameters for the thallous chloride 

system as follows: 
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AHleV. Wise'. ABm(av)eV. AHni(ev  eV. LISSA 

Present work 0.755 ± 0.005 1.36 1 0.03 0.09 0.40 8 ± 0.5 

Filauf53 0.76 — (0.12) (0.43) — 

Christy 	,a  
and Dobbg )̀  — 1.3 1 0.1 0.2 0.5 10.3 

Defect parameters for the thallous chloride system 

Table (4.1) 

The data in parentheses were calculated directly from the slopes of 

1 7, Friauf's log D against  plots using Alim(i) = ARD(i) —Ails  where 41111(i) 

is the activation enthalpy for diffusion of species i. 	2 Neglect of the 

temperature dependence of the correlation factor makes these values too high. 

The Schottky defect concentration in thallous chloride is now known to 

within 20A. In all other ionic systems it is only rarely known to an 

accuracy greater than one order of magnitude. 
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4.5. SPACE-CHARGE POLARIZATION IN THALLOUS BROMIDE 

In the absence of self-diffusion results for thallous bromide a 

completely self-consistent analysis of capacitance data in the manner 

detailed for thallous chloride in the preceding sections is not possible. 

It is nevertheless worthwhile to measure C as a preliminary for further 

investigation and to compare the results obtained with those for thallous 

chloride. 

C is again reproducible providing the precautions observed for the 

chloride are still heeded. However, C was measured for only two samples-

one determination for each - resulting in the data for the bromide being 

less reliable. 

The space-charge capacitance is plotted in Fig. (4.11) as log Cp  

against fl  the frequency of the applied A.C. field, at a number of fixed 

temperatures,C again approaching the static field value C in one extreme 

case (low f, high T) and zero in the other. The measured value of the 

capacitance again approaches the geometric value Cg  in the lower limit 

80 where K, the static dielectric constant, of the bromide at 30.3 is very 

close to the value of 31.9 for the chloride. Since K is determined mainly 

by electronic and lattice polarization it would imply that the polarization 

terms involved in computing vacancy formation energies are similar for the 

two substances, as predicted by analogy with Boswarva's calculations on the 

cesium halides. 
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TB-1. The 'frequency gradient' plot. 
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Log C is plotted against log f in Fig. (4.12) providing a value of 

the frequency gradient in the range 1.7— 1.8 4,  

All else being equal Eq. (2.61) 

Gco4kT 	1 2 C— 
P 

_ 
(1 + S )Ke2r3f4  

predicts that the space charge capacitance/unit area should be proportional 

to the square of the conductance/unit area. (TT1rst this prediction we 

( 	

28(T) 
have, in Fig. (4.13), plotted the term —22 	against T 

G0.0 	• Cp  

at 1 Ka. in the temperature range 525°K — 600°K where the 'frequency 

gradients' are approximately linear for both materials. The value of this 

lies close to 1 throughout. Since the static dielectric constants of 

thallous chloride and thallous bromide are approximately equal this would 

imply that the Schottky defect concentration x0  at any one temperature must 

be very similar for the two crystals. 
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4.6. THE ELECTRICAL CONDUCTIVITY OF PURE LITHIUM IODIDE 

- 	 • 
Following Haven

6 
 1, we shall assume the existence of Schottky disorder 

in lithium iodide with the positive ion vacancy as the dominant charge 

carrier and examine our experimental results in the light of this postulate. 

.The practical difficulties in preparing and handling lithium iodide have 

already been mentioned. In addition, the extreme hygroscopy of the material 

can lead to spurious results because samples inevitably absorb a certain amount 

of moisture on introduction into the cell and possibly during measurements. 

Such surface moisture can increase the conductivity by several orders of 

magnitude at temperatures around 350°K. where the monohydrate is known to 

melt, but the effects are too irreproducible to be studied systematically. 

The cell and sample were therefore kept under a hard vacuum at room temperature 

for at least 24 hours before being slowly heated as described in section 3.4. 

It would appear advantageous to keep the cell evacuated throughout, but this 

had the effect of increasing the conductivity quite steadily at higher 

temperatures (Av10% per hour at 673.5°K.)— an effect which was immediately 

suppressed by the introduction of an argon atmosphere. This upward drift of 

the conductivity is probably a direct result of the gradual decomposition 

the sample which is accelerated by evacuation through the removal of iodine. 

The incorporation of oxide into the host would then increase the concentration 

of anion vacancies which may contribute significantly to the conduction at 

elevated temperatures. This is known to be the case in one of the other 
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The conductivity of undoped lithium iodide. Superimposed data points 

are omitted for clarity. 

Fig. (4.14) 



lithium halides, namely the fluoride
10, where the anion carries some 

of the charge at temperatures approaching the melting point. 

The experimental procedure, already described in section 3.4., took 

account of these invalidating effects and enabled the conductivity to be 

reproduced to within Zg on thermal cycling, always keeping the temperature 

of the sample below 675°K. to avoid any oxidation. 

For this work softened platinum foils were inserted between the sample 

and the graphite blocks in the cell. The impression on the foil left by 

the sample after measurement then enabled the effective electrode surface 

area to be determined. This determination, together with weightmeasurement 

and direct micrometer readings, provided an acceptable value of the 

geometric factor which is so important in obtaining absolute values of the 

specific conducting 0-. 

4.6.1. The Intrinsic Region I  

The conductivity of undoped lithium iodide is plotted as log cLoT 

1  against-- in Fig. (4.14) for a number of typical samples. 

superimposable in the intrinsic region which is quite straight with a slope 

of 0.96* 0.1 eV. over a range of 120°K. to within 50°K. of the melting 

point, indicating the presence of only one mobile charge carrier. This is. 

assumed to be the lithium ion vacancy and we therefore write 
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All curves are 

H1 	Hf(cv) 4."Hm(cv) = 0.96 eV. 
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The extended intrinsic range for sample LI-1A is unusual. This 

sample was prepared from material which had not been treated with hydrogen/ . 

hydrogen iodide .and consequently contained a higher concentration of oxide. 

The presence of oxide reduces the electrical effect of divalent cationic 

impurities by forming impurity-oxide ion pairs. It is not necessary, 

however, to postulate the existence of such complex pairs as the enhanced 

anion vacancy concentration produced by the oxide automatically reduces the 

cation vacancy, or charge carrier, concentration by virtue of the 

'solubility product' equilibrium described in Eq. (1.6): 

-1 
x(av)* x(cv) = K  

in both events the extrinsic region is reduced in importance. 

Spectrochemical and colorimetric analyses of these samples indicate 

that divalent magnesium and divalent iron account for about 90% of the total 

polyvalent cation impurity content. In LI-3A magnesium is present at a 

level of •,,30 p.p.m. and iron at 0%•40 p.p.m. 

4.6.2. The Extrinsic Region II  

These divalent impurities give rise to a long, straight extrinsic 

region characterized by an enthalpy of 0.43'eV. which on our assumed model 

is attributed to the motion of a lithium ion vacancy: that is 

4H2 = '614M(cv) = 0.43 eV. 



We therefore calculate AH
s, the Schottky defect formation enthalpy, 

as 22Hf(ev) = 1.06 eV. 

If we assume the magnesium and iron in LI-3B to be dissolved 

substitutionally in the lithium iodide lattice, then xo, the atom fraction 

of cation vacancies, is equal to 7 x 105 throughout the linear range of 

region II. Furthermore, at the 'knee' - see Fig. (4.14) - where the 

extrapolated linear portion of region I intersects with that of region II, 

the intrinsic atom fraction of cation vacancies is also equal to 7 x 10 5. 

This intersection occurs at a-'knee temperature' of 1000/1.9 whence we may 

calculateAS
s, the entropy of Schottky defect formation, from 

) xo = 7 x 0- 	 S = exp 	 1 	exp 	CHs  
2k 

(4.4) 

exp ASs 	exp - 	0.53 x 1.9 

1000k 

1 Re-plotting Haven's results as log o-T against 	we calculate as follows: 

L1H1eV. AtiHm(cv)eV. AliseV. ASs/k x 0 (TM. )at4 

Haven61 'v1.0E3 A/0.42 ^v1.34 "/1.17 

Present work 0.96 0.43 1.06 4.5 "10.18 

Defect parameters for lithium iodide 

Table (4.3) 
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Haven, however, took all his measurements' with a current of nitrogen passing 

over his sample which would facilitate decomposition of the sample at elevated 

temperatures in a manner similar to that described for evacuation in this work. 

In addition, any oxygen present in the nitrogen gas would accelerate the 

oxidation of his samples. The upward drift of the conductivity would then 

explain the pronounced curvature in Haven's log o-T against plots and his 

high value of AH1
. Secondly, he extended his measurements no lower than 

420°K. and thus could only estimate 21H2' Indeed Haven emphasizes the 

unreliability of his results with lithium iodide. 

For the two alkali halides where the data are sufficiently accurate to 

determine ASs, the entropy of Schottky defect formation, we have LiSs  = 

6.2k (NaC1)6  and 5.4k (KC1)7  . A value of 4.5k for lithium iodide is 

therefore within the framework.of existing measurements. No accurate values 

of x
o
(T
m
) greater than 0.2at.% have been reported52 for Schottky disorder 

in alkali halides and our value of 0.18) for lithium iodide complies with 

this observation. For many crystals the defect concentration at the 

melting point lies between 0.02 and 0.2at.% - a range of only one order of 

magnitude. ASs  for these ionic crystals, where known, lies in the range 

4.5 - 8.5k which means that even in the two extreme cases x
o, in Eq. (4.4), 

is only altered by half an order of magnitude by the entropy term. The 

implications, therefore, are that the exponential enthalpic term in this 

equation is approximately constant for many crystals at their respective 

melting points. We shall examine this postulate in the following Table (4.4). 
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Crystal Disorder Structure Tm  m.p. °K Alls(f)eV Ref. 

, 

1000hHs/2 Tm  

T1C1 Schottky B.C.C. 703 1.34 This work 0.96 

CsBr Schottky B.C.C. 909 2.0 74  1.10 

CsI Schottky B.C.C. 894 1.9 74 1.06 

MP Schottky F.C.C. 1115 2.34 10 1.05 

LiI Schottky F.C.C. 719 1.06 This work 0.73 

Neel Schottky F.C.C. 1074 2.30 6 . 	1.07 

KC1 Schottky F.C.C. 1049 2.26 7 1.08 

AgC1 C.Frenkel F.C.C. 728 1.44 8 0.99 

AgBr C.Frenkel F.C.C. 703 1.06 9 0.75 

CaF2 A.Frenkel Fluorite 1633 2.80 81 0.86 

Defect formation enthalpies and melting points for some ionic crystals 

Table (4.4) 

The value of 1000/11112% is seen to be about 1.0 for well-studied crystals, 

regardless of the cryital structure and the type of disorder present. This 

indicates a close correlation between the enthalpy of defect formation in the 

crystal and the melting point, which is not totally unexpected in view of the 

common forces involved in determining these two parameters. If sufficient 



features are held in common between these crystals a law of corresponding 

states may apply and a pure crystal would melt when the intrinsic 

concentration of vacancies reached a certain critical value. This 

interpretation involves some far-reaching assumptions but it provides for 

a useful estimate of the enthalpy of defect formation from a knowledge of 

the fusion temperature alone. 

4.6.3. Magnesium Doped Lithium Iodide  

Haven
61 attempted to dope lithium iodide with a high concentration of 

magnesium but evidently failed to dissolve the magnesium substitutionally 

in the host because the extrinsic conductivity was less than doubled by an 

increase in the dopant level from 0.07 - 0.40 atomic %. 	In region II 

this conductivity should be given by 

arT = c o. 	exp 

N 	kT 

 

(4.5) 

  

where c0  is the concentration of magnesium ions, assuming no other impurities 

to be present. If the magnesium is not incorporated substitutionplly the 

above relation will not be true and a detailed analysis is not possible. 

We believe that magnesium iodide is only slightly soluble in lithium iodide 

inasmuch as sample LI-123 contained only ,̂120 atom p.p.m. magnesium in 

spite of being grown from a melt containing 1 mole % of magnesium iodide. 

The boule obtained from the Bridgman furnace in this case was milky in 
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appearance at both ends, LI-DB3 being cut from a clear section in the 

middle. It is well known that the Bridgman growth technique, with its 

effective single zone pass, is capable of sweeping impurities to the ends 

but it requires a low solubility of magnesium iodide in lithium iodide for 

the impurity level to be reduced as severely as in LI-DB3 with one zone 

pass. Admittedly, small amounts of oxide were seen to precipitate 

magnesium from the melt in LI-DB, but this accounted for only a fraction 

of the total magnesium present. No such precipitation was observed with 

LI-DA which yielded a clear boule, opaque only at its upper and. In order 

to take advantage of the uneven distribution of magnesium in as-grown 

crystals, samples were cleaved throughout the length and breadth of LI-DA 

which contained a total of 0.1 mol % magnesium. However, the magnesium 

content of all these samples ranged only from 30-60 a.p.p.m. 

The conductivity of magnesium doped lithium iodide is plotted in 

1 
Fig. (4.15) in the form of log 0;T against for several typical samples. 

The intrinsic conductivity of all these samples agrees well with the 

conductivity of undoped samples in this region. 	This high degree of 

reproducibility generally confirms that the present experimental techniques 

can yield meaningful results- even with so intransigent a material as lithium 

iodide. 

On thermal cycling region II was also completely reproducible for 

each sample although the slope of this accurately linear regiOn appears to 

decrease with increasing dopant concentration - Table (4.5). 
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Sample Yg44a.p.p.m. Fe÷a.p.p.m. 
Knee te 
100T

mp.TkoK  
k  W82 

eV. 

LI-38 30 40 1.9 0.43 

LI-DA4 30 ( 40) 1.91 0.43 

LI-DA13 60 ( 40) 1.87 0.38 

LI-DB3 120 ( 40) 1.8 0.37 

Parameters for impurity-controlled conduction in lithium 

iodide (concentrations to nearest 10 a.p.p.m.) 

o-  = c0  . o-  exp (AH2 
N T 	kT) 

Table (4.5) 

This is in direct contrast to Stoebe's observation in magnesium doped 

lithium fluoride whereAR2 increased with dopant level.' Stoebe, however, 

pointed out that region II became progressively shorter for increasing 

impurity concentration and the inclusion of experimental points in the 

transition region above or below region II tends to increase the apparent 

slope of this region. This is not the case with lithium iodide where region 

II is accurately linear over some 150°-200°K. This decrease in motional 

enthalpy with increasing concentration of extrinsic vacancies therefore 

appears to be systematic although the data is too restricted to be conclusive 

as the mean is 0.4 * 0.03 eV. which is a very small error for this parameter. 
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A rigorous correlation between the conductivity and co, the concentration 

of magnesium ions, in the manner of Eq. (4.5) is therefore impossible. 

If, however, we assume a constant background impurity of N40 a.p.p.m. of 

divalent iron we see in Fig. (4.15) that the impurity-controlled conduction 

is roughly proportional to the total divalent cation content. In support 

we calculate xo, the intrinsic lithium ion vacancy concentration at the 

'knee temperature', using the data given in Table (4.5), and plot it 

against 1  in Fig. (4.16) where we already have a pre-determined line from 

our estimate of xo(Tm) and A Hs in lithium iodide. The experimental points 

lie close to this line indicating that. we are studying the motion of lithium 

ion vacancies deliberately introduced by divalent cationic impurities. 

4.7. SPACE-CHARGE POLARIZATION IN LITHIUM IODIDE  

If we assume Eq. (2.69) 

4 Tco kT 

2  p = (1+ S )K.271.3f4L4 

e2 )).4 kT 

(1+ S )k-rr3f4L4  

to hold for lithium iodide, with cation vacancies (mobility))) appreciably 

more mobile than anion vacancies, then the square of the space-charge 

polarization capacitance C is proportional to the cube of xo, the 
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concentration of lithium ion vacancies. It is possible to control xo  

by the addition of aliovalent impurities, but the limited solubility of 

magnesium in lithium iodide restricts xo to such a value that C is not 

measurable in the extrinsic range and only becomes appreciable (>100 pF. 

at 1 KHz.) for temperatures around the 'knee' and upwards. 

C , however, is extremely sensitive to evacuation of the sample holder 

although in a different manner from the conductivity. Whereas the conductivity 

rises slowly on evacuating, C rises sharply over a few seconds of evacuation 

often by as much as 50% and then increases very slowly. This phenomenon 

was too irreproducible for systematic investigation but the prompt 

reintroduction of dry argon usually restored the original value of C to 

within 10% after several minutes. The conductivity was unchanged over such 

a short period. 

The influence of evacuation on C is probably a surface effect, whereby 

the presence of chemically absorbed moisture on the surface of the lithium 

iodide gives rise to a preferred conduction path on the surface of the sample 

which would effectively short-circuit some of the space-charge and relax 

the blocking electrode boundary condition. The concomitant increase in 

conduction would be extremely small in comparison with the over-all 

conductivity by virtue of the minute conduction cross-section and poor 

electrode contact of the lateral surfaces of the sample (parallel to the 

electric field). If this were the case the correct space-charge 

capacitance would be that which is obtained with the sample continuously 
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under vacuum. Evacuation, however, has an undesirable effect on the long 

term conduction as described in section 4.6. , probably introducing a secondary 

effect on the capacitance, and can therefore not be employed as an effective 

dehydrant. Accordingly, it was necessary to use the less efficient technique 

of maintaining a dry atmosphere by periodic flushing with dried argon. Our 

values of C , therefore, are possibly in error by a factor of 2 in some cases. 

One can, nevertheless, determine the isothermal frequency dependence of C 

obtaining useful insight into space-charge effects in this material. 

The polarization of sample LI-3B is plotted in Fig. (4.17) as log Cp  

against f for a number of temperatures. As with the thallous halides C 

asymptotes to zero at high frequenies and low temperatures with the 

measured capacitance (C
P 
 + Cg) providing a value of Cg  consistent with the 

geometry and static dielectric constant (11.1)80  of the crystal. The low 

frequency, high temperature approach to Co  is not so obvious with lithium 

iodide because of the restricted temperature range of study. 

Log C is further plotted against log f in Fig. (4.18) providing values 

of the 'frequency gradient' between 1.35 and 1.50 in LI-3B. Data for a 

number of other crystals are given in Table (4.6) where it is seen that the 

'frequency gradient' varies widely - increasing with temperature for sone 

samples and decreasing for others. 
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Sample Conditions Temp.°K. Frequency gradient 

LI-3A All readings 535 	- 640 1.59 - 	1.43 

LI-3B taken on 539 	- 646 1.33 - 	1.50 

LI-DA4 cooling with 557 	- 641 1.17 - 	1.28 

LI-DA13 an argon 593 	- 643 1.59 - 	1.53 

LI-DB3 atmosphere 572 	- 643 1.53 - 	1.30 

The 'frequency gradient' for lithium iodide. 

Table (4.6) 

Both Friauf47 and Jacobs49 detected similar inconsistencies in their results 

when they altered the electrode conditions by lengthy annealing or changing 

the electrode material, in each case varying the blocking characteristics of 

the electrode. The figures in Table (4.6) therefore appear symptomatic of 

the leaking capacitance model described in section 4.7. 

The reciprocal values of C are plotted against L, the length of the 

sample, and L2  in Fig. (4.19). Although the space-charge polarization 

decreases, as expected, with increasing length of the sample and both curves 

must pass through the origin, the absolute values of C are insufficiently 

accurate for us to differentiate between the two types of power dependence. 

Finally if we assume complete dissociation of neutral vacancy pairs and 

strict dependence on the equation 
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2 C = (14. 6 )Kf4.27.31,4 

using the values given in Table (4.7) 

L T f x
0  

44,-00  C 
P
(theor) C 

P 
 (expt.) 

2.90mms. 624°K. MHz. 9.45x10
18 

per. cc. 
6.09x10-3 

ohm-lcm-1  
1.18x106 

pF/sq.cm. 
1.22x105 

pF/sq.cm. 

Values for the theoretical calculation of C 

Table (4.7) 

we find that C (theoretical) is approximately one order of magnitude higher 

than the experimental value. This is encouraging as our values of C were 

often half those obtained under vacuum which, as we have already indicated, 

may be the more accurate. 

4.8. THE DISORDER IN LITHIUM IODIDE  

We have obtained a consistent analysis of our results on lithium iodide 
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by assuming the presence of Schottky disorder with 
Nev)>11(a01 

 but we 

may obtain equal self-consistency if we assume that Frenkel disorder exists 

on the cation sub-lattice with the vacant cation site again the predominant 

charge carrier. The addition of magnesium enhances the conductivity 

indicating mobile cation vacancies or anion interstitials, but the presence 

of mobile iodine interstitials is unlikely on account of the large size of 

the ion. On the other hand, it might be argued that cationic Frenkel 

disorder exists with the interstitial ion more mobile than the vacancy and 

that we have artificially increased the conduction due to vacancies over that 

due to interstitials by divalent cationic doping. However, in situations like 

these, as with silver chloride8, the log o-T against 1  --plot is more complex 

than that obtained in Fig. (4.14) and distinct non-linearity is apparent 

throughout the plot where we have two conducting species. We suggest 

therefore that conduction in lithium iodide is due to mobile cation vacancies 

but we are unable to say whether the complementary defects are anion vacancies 

or cation interstitials. 

In order to differentiate between these two types of disorder we may 

determine the thermal expansion of lithium iodide which, as Simmons pointed 

out, will contain a contribution from the additional vacant sites created 

in the case of Schottky disorder. In addition, the measurement of the 

self-diffusion coefficient of the iodine ion will enable us to determine 

whether or not the vacant anion site contributes significantly to the conduction. 
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