11 research outputs found

    Effects of different temperature and duration during cold storage and transportation on physico-chemical properties, microbial safety and sensory attributes acceptability of broiler chicken breast

    No full text
    Temperature plays an important role in meat processing. Observations in poultry processing plants have shown a serious deviation in processing temperature compared to the recommended temperature. Furthermore, there is still a paucity of evidence on the effects of temperature on meat quality and microbial population. The aim of the first experiment was to compare the effects of different temperature and duration during storage on physico-chemical properties and microbial safety of broiler chicken breast. 80 birds were slaughtered and processed following which, the packed boneless breast (PBB) (each bird was to provide 2 breast muscle samples; Left Breast & Right Breast) was divided into 4 groups, each consisted of 40 PBB. Each group was subsequently assigned to storage either at 4°C, -10°C, -18°C or -40°C, for 24 h before 20 PBB samples from each group were transported to laboratory for instrumental meat quality and microbiological analysis. The remaining 20 PBB from each storage temperature were stored for 72 h before transported for analysis. Results have shown that there were significant increases in drip loss and cooking loss as the storage temperature decreases. Similarly, storage duration significantly affected cooking loss, of which, samples stored for 72 h exhibit higher cooking loss compared to those stored for 24 h. For color, significant differences were only observed in lightness (L*) and redness (a*) values. Longer length of storage had significantly improved tenderness whereby, samples that have been stored for a shorter duration presented higher pH values. Populations of coliform and Salmonella decreased significantly with decreasing temperature and increasing storage duration. The second experiment was conducted to determine the influence of temperature and duration of transportation on physico-chemical properties and microbial safety of broiler chicken breast. 60 birds were slaughtered and processed as in the first experiment. During storage, all 120 PBB were stored in -18°C for 24 h before subsequently assigned to transportation temperature either at 4°C, 10°C or 15°C. Sixty of the PBB that were loaded into the cold truck with different temperatures were transported within 1 h, while the remaining 60 were transported within 5 h of traveling time. Different transportation temperature has a significant effect on coliform and Salmonella population without affecting drip loss, cooking loss, lightness (L*), redness (a*), yellowness (b*), pH and tenderness. Transportation duration have significantly affected lightness (L*), redness (a*), yellowness (b*), pH, coliform and Salmonella population of broiler chicken breast. For the third experiment, 210 birds were slaughtered and processed. Immediately after packaging, PBB were divided into two groups, with each consisted of 240 PBB and 180 PBB. The first 240 PBB followed the same procedure as in the first experiment, while the other 180 PBB followed the procedure as in the second experiment. The third experiment provided results related to sensory attributes acceptability of broiler chicken breast that have been stored and transported in different temperature and duration via consumer acceptance survey and sensory evaluation test. For chicken subjected to different storage temperature and duration, samples that were assigned at 4°C and -10°C exhibit better color and aroma score. However, those subjected to -18°C and -40°C storage, were of better scores in terms of tenderness and juiciness. For overall acceptance, consumers prefer chickens which were stored at 4°C for 24 h. As for chicken meats transported at different temperatures and travel durations, samples transported at higher temperature recorded higher scores in aroma, tenderness and juiciness. Similar to storage duration, transportation duration has limited effects on sensory characteristics. Meanwhile, the overall acceptance score of chicken meat transported at different temperatures and durations suggest that consumer prefer chicken meat transported at 10°C for 1 h

    Assessment of Physicochemical Characteristics and Microbiological Quality in Broiler Chicken Breast Muscle (Pectoralis major) Subjected to Different Temperatures and Lengths of Cold Transportation

    No full text
    Cold truck transportation is considered one of the most integral parts in a food processing chain. However, countless cases of product spoilage and food poisoning incidents have proven that temperature control during transport has been neglected. Literature on the impact of temperature during distribution is scarce. The objective of this study was to investigate the impact of various transportation temperatures and travel duration on the meat quality and microbial population of broiler chicken breast muscle. Sixty broiler chickens (42 days old) were slaughtered and eviscerated; they then had their breast muscles removed (each bird provided two breast muscle samples: left breast and right breast), which were wrapped in plastic film. All 120 packed boneless breasts (PBBs) were then placed at −18 °C for 24 h. After 24 h, the 60 PBB samples were subjected to transportation for 1 h at 4 °C (20 PBBs), 10 °C (20 PBBs), and 15 °C (20 PBBs) while the remaining 60 samples were transported for 5 h at 4 °C (20 PBBs), 10 °C (20 PBBs), and 15 °C (20 PBBs) before analyses. The samples transported at higher temperatures exhibited higher populations of coliform and Salmonella than those transported at lower temperatures. A significant impact of the transportation duration on the Salmonella population was only observed in samples transported at 4 °C for 5 h. However, a significant impact of transportation temperature on color was only recorded for the redness (a*) values, where the samples transported at higher temperatures exhibited higher redness (a*) values. Significant increases in lightness (L*) and yellowness (b*) values as well as decreases in redness (a*) and pH values were recorded in samples subjected to longer durations of transportation across all the temperatures observed in this study

    Are spiritual, ethical, and eating qualities of poultry meat influenced by current and frequency during electrical water bath stunning?

    No full text
    ABSTRACT: With the continuous rise of Muslim and Jewish populations and their increasing preference for ritually slaughtered poultry meat, the industry is forced to redefine its existing product-centric quality standard toward a new consumer-centric dimension of quality. The new dimension is mainly attributed to ensuring animal welfare and ethical treatment (ethical quality), spiritual quality (such as halal status, cleanliness), and eating quality standards set by religion. To meet consumer quality requirements while maintaining high production performance, the industry has incorporated newer technologies that are compatible with religious regulations such as stunning methods like electrical water bath stunning. However, the introduction of new techniques such as electrical water bath stunning has been met with mixed reactions. Some religious scholars have banned the use of any stunning methods in religious slaughter, as halal status is believed to be compromised in cases where birds have been stunned to death before slaughter. Nevertheless, some studies have shown the positive side of the electrical water bath stunning procedure in terms of preserving eating, ethical, and spiritual quality. Therefore, the present study aims to critically analyze the application of various aspects of electrical water bath stunning such as current intensity and frequency on various quality attributes, namely, ethical, spiritual, and eating quality of poultry meat

    Physico-Chemical Characteristics and Microbiological Quality of Broiler Chicken Pectoralis Major Muscle Subjected to Different Storage Temperature and Duration

    No full text
    Storage temperature and duration plays an important role in meat processing. Observations in poultry processing plants have shown a serious deviation in storage condition compared to the recommended procedures. Furthermore, there is still a paucity of evidence on the effects of storage temperature and duration on meat quality and microbial population. The aim of this study was to determine the effects of different temperature and duration during storage on physico-chemical properties and microbiological quality of broiler chicken Pectoralis major muscle. Eighty birds were slaughtered and processed, following which the packed boneless breast (PBB) (each bird was to provide two breast muscle samples; left breast and right breast) was divided into four groups, each consisted of 40 PBB. Each group was subsequently assigned to storage either at 4 °C, −10 °C, −18 °C or −40 °C, for 24 h before 20 PBB samples from each group were transported to the respective laboratory for meat quality and microbiological analysis. The remaining 20 PBB from each storage temperature were stored for 72 h before being transported for analysis. Results have shown significant increases in drip loss and cooking loss as the storage temperature decreases. Similarly, storage duration significantly affected cooking loss, of which, samples stored for 72 h exhibited higher cooking loss compared to those stored for 24 h. For color, significant differences were only observed in lightness (L*) and redness (a*) values. Longer duration of storage had significantly improved tenderness whereby, samples that have been stored for a shorter duration presented higher pH values. Populations of coliform and Salmonella decreased significantly with decreasing temperature and increasing storage duration

    Improving animal welfare status and meat quality through assessment of stress biomarkers: a critical review

    No full text
    Stress induces various physiological and biochemical alterations in the animal body, which are used to assess the stress status of animals. Blood profiles, serum hormones, enzymes, and physiological conditions such as body temperature, heart, and breathing rate of animals are the most commonly used stress biomarkers in the livestock sector. Previous exposure, genetics, stress adaptation, intensity, duration, and rearing practices result in wide intra- and inter-animal variations in the expression of various stress biomarkers. The use of meat proteomics by adequately analyzing the expression of various muscle proteins such as heat shock proteins (HSPs), acute phase proteins (APPs), texture, and tenderness biomarkers help predict meat quality and stress in animals before slaughter. Thus, there is a need to identify non-invasive, rapid, and accurate stress biomarkers that can objectively assess stress in animals. The present manuscript critically reviews various aspects of stress biomarkers in animals and their application in mitigating preslaughter stress in meat production

    Technological interventions in improving the functionality of proteins during processing of meat analogs

    No full text
    Meat analogs have opened a new horizon of opportunities for developing a sustainable alternative for meat and meat products. Proteins are an integral part of meat analogs and their functionalities have been extensively studied to mimic meat-like appearance and texture. Proteins have a vital role in imparting texture, nutritive value, and organoleptic attributes to meat analogs. Processing of suitable proteins from vegetable, mycoproteins, algal, and single-cell protein sources remains a challenge and several technological interventions ranging from the isolation of proteins to the processing of products are required. The present paper reviews and discusses in detail various proteins (soy proteins, wheat gluten, zein, algal proteins, mycoproteins, pulses, potato, oilseeds, pseudo-cereals, and grass) and their suitability for meat analog production. The review also discusses other associated aspects such as processing interventions that can be adapted to improve the functional and textural attributes of proteins in the processing of meat analogs (extrusion, spinning, Couette shear cell, additive manufacturing/3D printing, and freeze structuring)

    Global, regional, and national burden of diabetes from 1990 to 2021, with projections of prevalence to 2050: a systematic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Diabetes is one of the leading causes of death and disability worldwide, and affects people regardless of country, age group, or sex. Using the most recent evidentiary and analytical framework from the Global Burden of Diseases, Injuries, and Risk Factors Study (GBD), we produced location-specific, age-specific, and sex-specific estimates of diabetes prevalence and burden from 1990 to 2021, the proportion of type 1 and type 2 diabetes in 2021, the proportion of the type 2 diabetes burden attributable to selected risk factors, and projections of diabetes prevalence through 2050. Methods: Estimates of diabetes prevalence and burden were computed in 204 countries and territories, across 25 age groups, for males and females separately and combined; these estimates comprised lost years of healthy life, measured in disability-adjusted life-years (DALYs; defined as the sum of years of life lost [YLLs] and years lived with disability [YLDs]). We used the Cause of Death Ensemble model (CODEm) approach to estimate deaths due to diabetes, incorporating 25 666 location-years of data from vital registration and verbal autopsy reports in separate total (including both type 1 and type 2 diabetes) and type-specific models. Other forms of diabetes, including gestational and monogenic diabetes, were not explicitly modelled. Total and type 1 diabetes prevalence was estimated by use of a Bayesian meta-regression modelling tool, DisMod-MR 2.1, to analyse 1527 location-years of data from the scientific literature, survey microdata, and insurance claims; type 2 diabetes estimates were computed by subtracting type 1 diabetes from total estimates. Mortality and prevalence estimates, along with standard life expectancy and disability weights, were used to calculate YLLs, YLDs, and DALYs. When appropriate, we extrapolated estimates to a hypothetical population with a standardised age structure to allow comparison in populations with different age structures. We used the comparative risk assessment framework to estimate the risk-attributable type 2 diabetes burden for 16 risk factors falling under risk categories including environmental and occupational factors, tobacco use, high alcohol use, high body-mass index (BMI), dietary factors, and low physical activity. Using a regression framework, we forecast type 1 and type 2 diabetes prevalence through 2050 with Socio-demographic Index (SDI) and high BMI as predictors, respectively. Findings: In 2021, there were 529 million (95% uncertainty interval [UI] 500-564) people living with diabetes worldwide, and the global age-standardised total diabetes prevalence was 6·1% (5·8-6·5). At the super-region level, the highest age-standardised rates were observed in north Africa and the Middle East (9·3% [8·7-9·9]) and, at the regional level, in Oceania (12·3% [11·5-13·0]). Nationally, Qatar had the world's highest age-specific prevalence of diabetes, at 76·1% (73·1-79·5) in individuals aged 75-79 years. Total diabetes prevalence-especially among older adults-primarily reflects type 2 diabetes, which in 2021 accounted for 96·0% (95·1-96·8) of diabetes cases and 95·4% (94·9-95·9) of diabetes DALYs worldwide. In 2021, 52·2% (25·5-71·8) of global type 2 diabetes DALYs were attributable to high BMI. The contribution of high BMI to type 2 diabetes DALYs rose by 24·3% (18·5-30·4) worldwide between 1990 and 2021. By 2050, more than 1·31 billion (1·22-1·39) people are projected to have diabetes, with expected age-standardised total diabetes prevalence rates greater than 10% in two super-regions: 16·8% (16·1-17·6) in north Africa and the Middle East and 11·3% (10·8-11·9) in Latin America and Caribbean. By 2050, 89 (43·6%) of 204 countries and territories will have an age-standardised rate greater than 10%. Interpretation: Diabetes remains a substantial public health issue. Type 2 diabetes, which makes up the bulk of diabetes cases, is largely preventable and, in some cases, potentially reversible if identified and managed early in the disease course. However, all evidence indicates that diabetes prevalence is increasing worldwide, primarily due to a rise in obesity caused by multiple factors. Preventing and controlling type 2 diabetes remains an ongoing challenge. It is essential to better understand disparities in risk factor profiles and diabetes burden across populations, to inform strategies to successfully control diabetes risk factors within the context of multiple and complex drivers. Funding: Bill & Melinda Gates Foundation
    corecore