39 research outputs found

    Bayesian Image Restoration for Poisson Corrupted Image using a Latent Variational Method with Gaussian MRF

    Get PDF
    We treat an image restoration problem with a Poisson noise chan- nel using a Bayesian framework. The Poisson randomness might be appeared in observation of low contrast object in the field of imaging. The noise observation is often hard to treat in a theo- retical analysis. In our formulation, we interpret the observation through the Poisson noise channel as a likelihood, and evaluate the bound of it with a Gaussian function using a latent variable method. We then introduce a Gaussian Markov random field (GMRF) as the prior for the Bayesian approach, and derive the posterior as a Gaussian distribution. The latent parameters in the likelihood and the hyperparameter in the GMRF prior could be treated as hid- den parameters, so that, we propose an algorithm to infer them in the expectation maximization (EM) framework using loopy belief propagation(LBP). We confirm the ability of our algorithm in the computer simulation, and compare it with the results of other im- age restoration frameworks.Comment: 9 pages, 6 figures, The of this manuscript is submitting to the Information Processing Society of Japan(IPSJ), Transactions on Mathematical Modeling and its Applications (TOM

    Support Vector Machine Histogram: New Analysis and Architecture Design Method of Deep Convolutional Neural Network

    Get PDF
    Deep convolutional neural network (DCNN) is a kind of hierarchical neural network models and attracts attention in recent years since it has shown high classification performance. DCNN can acquire the feature representation which is a parameter indicating the feature of the input by learning. However, its internal analysis and the design of the network architecture have many unclear points and it cannot be said that it has been sufficiently elucidated. We propose the novel DCNN analysis method “Support vector machine (SVM) histogram” as a prescription to deal with these problems. This is a method that examines the spatial distribution of DCNN extracted feature representation by using the decision boundary of linear SVM. We show that we can interpret DCNN hierarchical processing using this method. In addition, by using the result of SVM histogram, DCNN architecture design becomes possible. In this study, we designed the architecture of the application to large scale natural image dataset. In the result, we succeeded in showing higher accuracy than the original DCNN

    B-DCGAN:Evaluation of Binarized DCGAN for FPGA

    Full text link
    We are trying to implement deep neural networks in the edge computing environment for real-world applications such as the IoT(Internet of Things), the FinTech etc., for the purpose of utilizing the significant achievement of Deep Learning in recent years. Especially, we now focus algorithm implementation on FPGA, because FPGA is one of the promising devices for low-cost and low-power implementation of the edge computer. In this work, we introduce Binary-DCGAN(B-DCGAN) - Deep Convolutional GAN model with binary weights and activations, and with using integer-valued operations in forward pass(train-time and run-time). And we show how to implement B-DCGAN on FPGA(Xilinx Zynq). Using the B-DCGAN, we do feasibility study of FPGA's characteristic and performance for Deep Learning. Because the binarization and using integer-valued operation reduce the memory capacity and the number of the circuit gates, it is very effective for FPGA implementation. On the other hand, the quality of generated data from the model will be decreased by these reductions. So we investigate the influence of these reductions.Comment: 10 page

    Feature Representation Analysis of Deep Convolutional Neural Network using Two-stage Feature Transfer -An Application for Diffuse Lung Disease Classification-

    Get PDF
    Transfer learning is a machine learning technique designed to improve generalization performance by using pre-trained parameters obtained from other learning tasks. For image recognition tasks, many previous studies have reported that, when transfer learning is applied to deep neural networks, performance improves, despite having limited training data. This paper proposes a two-stage feature transfer learning method focusing on the recognition of textural medical images. During the proposed method, a model is successively trained with massive amounts of natural images, some textural images, and the target images. We applied this method to the classification task of textural X-ray computed tomography images of diffuse lung diseases. In our experiment, the two-stage feature transfer achieves the best performance compared to a from-scratch learning and a conventional single-stage feature transfer. We also investigated the robustness of the target dataset, based on size. Two-stage feature transfer shows better robustness than the other two learning methods. Moreover, we analyzed the feature representations obtained from DLDs imagery inputs for each feature transfer models using a visualization method. We showed that the two-stage feature transfer obtains both edge and textural features of DLDs, which does not occur in conventional single-stage feature transfer models.Comment: Preprint of the journal article to be published in IPSJ TOM-51. Notice for the use of this material The copyright of this material is retained by the Information Processing Society of Japan (IPSJ). This material is published on this web site with the agreement of the author (s) and the IPS

    A Bayesian Hyperparameter Inference for Radon-Transformed Image Reconstruction

    Get PDF
    We develop a hyperparameter inference method for image reconstruction from Radon transform which often appears in the computed tomography, in the manner of Bayesian inference. Hyperparameters are often introduced in Bayesian inference to control the strength ratio between prior information and the fidelity to the observation. Since the quality of the reconstructed image is controlled by the estimation accuracy of these hyperparameters, we apply Bayesian inference into the filtered back-projection (FBP) reconstruction method with hyperparameters inference and demonstrate that the estimated hyperparameters can adapt to the noise level in the observation automatically. In the computer simulation, at first, we show that our algorithm works well in the model framework environment, that is, observation noise is an additive white Gaussian noise case. Then, we also show that our algorithm works well in the more realistic environment, that is, observation noise is Poissonian noise case. After that, we demonstrate an application for the real chest CT image reconstruction under the Gaussian and Poissonian observation noises

    Bayesian inference to identify crystalline structures for XRD

    Full text link
    Crystalline phase structure is essential for understanding the performance and properties of a material. Therefore, this study identified and quantified the crystalline phase structure of a sample based on the diffraction pattern observed when the crystalline sample was irradiated with electromagnetic waves such as X-rays. Conventional analysis necessitates experienced and knowledgeable researchers to shorten the list from many candidate crystalline phase structures. However, the Conventional diffraction pattern analysis is highly analyst-dependent and not objective. Additionally, there is no established method for discussing the confidence intervals of the analysis results. Thus, this study aimed to establish a method for automatically inferring crystalline phase structures from diffraction patterns using Bayesian inference. Our method successfully identified true crystalline phase structures with a high probability from 50 candidate crystalline phase structures. Further, the mixing ratios of selected crystalline phase structures were estimated with a high degree of accuracy. This study provided reasonable results for well-crystallized samples that clearly identified the crystalline phase structures
    corecore