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Abstract Deep Convolutional Neural Network (DCNN) is a kind of hierarchical neural
network models and attracts attention in recent years since it has shown high classification
performance. DCNN can acquire the feature representation which is a parameter indicating
the feature of the input by learning. However, its internal analysis and the design of the net-
work architecture have many unclear points and it cannot be said that it has been sufficiently
elucidated. We propose the novel DCNN analysis method “Support Vector Machine (SVM)
Histogram” as a prescription to deal with these problems. This is a method that examines the
spatial distribution of DCNN extracted feature representation by using the decision bound-
ary of linear SVM. We show that we can interpret DCNN hierarchical processing using
this method. In addition, by using the result of SVM Histogram, DCNN architecture de-
sign becomes possible. In this study, we designed the architecture of the application to large
scale natural image dataset. In the result, we succeeded in showing higher accuracy than the
original DCNN.

Keywords Deep Convolutional Neural Network · Support Vector Machine · Architecture
Design · CIFAR-10 · ImageNet

1 Introduction

Deep Convolutional Neural Network (DCNN) is one of the multi-layer neural networks,
which can automatically obtain feature representation from input data [3]. The origin of
DCNN is known as “Neocognitron”, which is proposed by Fukushima [5, 12]. Neocog-
nitron is a visual model of “Simple Cell” and “Complex Cell” discovered by Hubel and
Wiesel, in the cat’s primary visual cortex and monkey’s V1 field and it realized with the
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framework of a hierarchical neural network. They are implemented by Convolution oper-
ation and Pooling operation, respectively. In recent years, the DCNN model represented
by AlexNet proposed by Krizhevsky et al. which attracts attention because it shows clas-
sification accuracy exceeding other methods without DCNN in the contest such as image
classification and speech recognition [11, 18]. The DCNN is now going to become a de
facto standard classification tool in the image classification field, and the related research
has been increased [3].

DCNN has been shown to be an effective model for image classification, speech recog-
nition, furthermore computer games [16], etc. However, it is known that the following prob-
lems exist [18].

1) Since the processing and behavior inside DCNN are very complicated, it is difficult to
analyze how to obtain high classification accuracy.

2) Since there are few design guidelines with respect to the architecture of DCNNs, it is
necessary to do trial-and-error many times.

In this work, in order to deal with these problems, we consider applying the analysis method
of internal behavior of DCNN using the linear Support Vector Machine (SVM) proposed in
the previous work, and we call this method “SVM Histogram” [15]. SVM Histogram is a
technique to make the decision boundary of linear SVM using the feature extracted from the
inside of the DCNN and to investigate the spatial distribution of the feature representation
by projecting it to the decision boundary.

In the previous work, we analyzed by investigating the progress of pattern separation
between layers by using this SVM Histogram, and we revealed that DCNN is promoting
class separation by making narrow the histogram shape for each layer [15]. As the result,
we concluded the narrower representation of each class plays an important role for the class
discriminability.

In this work, we analyze the internal representation of DCNN using this SVM Histogram
and investigate how obtains the feature representation acquired not only changes from layer
to layer but also in the learning process. In addition, we apply our method to architecture
design of DCNN and try to utilize it as the guideline for architecture design.

1.1 Related Work

In this subsection, we introduce the related research on DCNN analysis method and archi-
tecture design.

1.1.1 Interpretation of representation in DCNN

In order to make it possible to interpret the feature representation of DCNN, many types
of research have been done on visualization of feature representation in previous works.
Visualizing the feature representation of the DCNN intermediate layer is extremely useful
because it can intuitively evaluate what kind of feature representation hierarchically acquired
by DCNN. However, the technique of simply visualizing the convolution filter can only be
applied to the first layer closest to the input pixel space. As a visualization method of high
layer filters, Zeiler et al. proposed Deconvolutional network (DeconvNet) which is a method
of simulating feedback of the DCNN forward propagation process, and revealed that feature
representation of different abstraction levels is extracted for each layer [18]. This method is
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intuitive in that it shows image features that react of intermediate layers, but it is unclear as
to how these features contribute to classification.

On the other hand, Lin et al. proposed a classification method that classifies by taking
the average value from the entire feature map, which is the processing result of the Con-
volution operation [13]. By visualizing the feature map before taking the average value of
this method, it was clarified which part of the input image contributes to classification. In
addition, Simonyan et al. proposed a method to optimize the input image so as to maximize
the classification probability of each category and visualize which features of each category
are responsive selectively in DCNN recognition layer [17]. In contrast to the above method,
these methods can investigate which part of the input image contributes to the classification,
but there is a problem that changes in the feature expression in the layerwise processing of
DCNN cannot be visualized.

In this work, we propose a method to visualize the feature representation as a projec-
tion of the distance to the decision boundary of the linear SVM, rather than showing the
feature representation like above methods as an image. By using this method, we can obtain
separation information of feature representation of each layer.

1.1.2 Architecture Design

The architecture design of DCNN is a very important factor influencing the classification
accuracy of it. However, in the architecture design of DCNN, there are few design guide-
lines except the classification accuracy when learning converges. Therefore, the architecture
design of DCNN has found a better architecture by a large number of trial-and-error at
present [18].

In order to deal with this problem, Zeiler et al. showed that the classification accu-
racy improves by modifying the architecture so as to reduce the filter which does not con-
tribute to feature extraction among the AlexNet filters using the visualization result of De-
convNet [18]. In the case of improving the architecture using DeconvNet, it is possible to
modify the local architecture such as the size and stride of the convolution filter, but it is
difficult to alter the global architecture such as a combination of Convolution and Pooling
layers. In addition, it is relatively difficult to find a way to improve DCNN from the ob-
tained results, and it is predicted that it will be difficult to utilize unless you are familiar with
DCNN.

On the other hand, by using unsupervised learning method like Fukushima’s Add-if-
Silent (AiS) rule, it becomes possible to automatically obtain the number of filters, that can
sufficiently express input data. The AiS rule is a method of incrementing the corresponding
filter sequentially until there is no feature extraction filter that responds to input data [6]. Un-
supervised learning method such as AiS rule is capable of designing architectures according
to the nature of input data but similar to the method of Zeiler et al., there are problems such
as the number and the combination of layers to be determined in advance. Also, as com-
pared with supervised learning, label information is missing, so classification accuracy is
often inferior.
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2 Method and Formulation

2.1 Deep Convolutional Neural Network

In this work, we use the CaffeNet as the baseline DCNN [4]. This CaffeNet has an almost
same architecture to the AlexNet [11]. And Fig.1 shows the CaffeNet architecture. Here, we
explain and formulate the components of DCNN by taking CaffeNet as an example.

The DCNN has an alternate structure of pattern transformation called “stage” [5, 14],
which basically consists of “Convolution”, “Rectified Linear (ReLU)”, and “Pooling” lay-
ers. Considering the i th stage for the p th input pattern, we formulate each layer response
as followings. The “convolution” layer extracts feature maps as

f conv
p,i (k, x) =

∑
l,u

gi(k, l,u) f pool
p,i−1(l, x − u), (1)

where k means the index of feature map, and x means the location of the map. The con-
volution kernel gi(k, l,u) means the feature including in the l th feature map of the pooling
(with normalization) layer in the previous stage f pool

p,i−1(l, x) . In each feature map f conv
p,i (k, x),

extracted features are modulated with the rectified linear unit (ReLU):

f ReLU
p,i (k, x) = max[0, f conv

p,i (k, x) + bi,k], (2)

where bi,k means bias parameter of k th index. Then, in each modulated feature map, spa-
tially neighbor responses are gathered for calculation of representative value, which is called
spatial pooling:

f pool
p,i (k, x) = max

ξ∈N(x)
[ f ReLU

p,i (k,u)], (3)

where N(x) means the spatial neighbor area around the location x on the map. We call
the pooling method as described above as “max-pooling”. In addition to this, there is a
method called “average-pooling” whose representative value is the average value of the
space neighborhood region N(x). Then, these response maps are normalized in the same
manner with Krizhevsky et al. at optional [11].

In the Fig.1, “fc6”, which abbreviate 6 th stage fully-connected layer, is feature extrac-
tion layer. Following layers, which are “fc7”, “fc8” layers, have the multi-layer perceptron
(MLP) structure, which plays a role as the classier. In this work, we fixed the training method
for the DCNN as the error back-propagation (BP) method, which is used as the standard
training method in these decades [12].

Also, there are parameters called Stride and Filter size for Convolution and Pooling
processing of DCNN. Stride parameter is the distance between the Convolution (or Pooling)
filter centers of neighboring processes in a input feature map [11], Filter size is a parameter
that determines the size of filter. For example, the filter on the Conv1 layer of CaffeNet has
Stride:4 and Filter size:11 × 11.

[Fig. 1 about here.]
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2.2 Layer Response Representation with SVM Histogram

This section explains the SVM histogram for layer representation in the DCNN [15]. In
the previous work, we introduced a linear SVM for each layer in order to observe how
representations in the DCNN develops throughout layer transformations. Let us consider the
linear SVM which finds a decision boundary. The decision boundary is described as y(x) =

wtφ(x) + b = 0, where φ(x) denotes the layer representation for the input pattern x. Here
we introduce t as the teacher signal, which is described as tn ∈ {1,−1} in the case of two-
class classification problem where n means the index for the test class pattern. In the feature
space, the decision boundary of the linear SVM is obtained by maximizing the margin,
1/||w|| minn[tn(wTφ(xn) + b)] [1]. Please note that we use the one-vs-one classification
method for linear SVM training of SVM Histogram.

In our previous work, we introduced a distance from the decision boundary for each
layer representation φ(x) as a measure of discriminability, which is described as y(x) =

wTφ(x) + b where w and b are optimized by the linear SVM. Then, we can obtain a test
class projection {y(xn)}. We analyze the projection {y(xn)} as a histogram in the previous
work[15]. Hereafter, we call it as “SVM Histogram” for layer representation. Using the
SVM Histogram for each layer, we can visualize the distribution of each class data for an
intermediate layer of the DCNN. Here, Fig.2 shows the overview of the SVM histogram.

[Fig. 2 about here.]

According to the previous work, the SVM histogram becomes narrower through the hierar-
chical development of representation in the DCNN layers. As the result, we concluded the
narrower representation of each class plays an important role for the class discriminabil-
ity [15].

3 Feature Analysis with SVM Histogram

First of all, we try to analyze the internal representation of DCNN using SVM Histogram.
We use CIFAR-10 dataset [9, 10] as training and evaluation dataset, and investigate how
class separation progresses with the number of learning. This CIFAR-10 dataset is often used
for DCNN evaluation, and it is one of the benchmarks of DCNN and related technologies [7,
13]. In addition, the data size is about 200 MB, it is very light compared to ImageNet and if
you want to do a replicate experiment, there is also an advantage that it is extremely easy to
do.

3.1 Training Details

In the following, we describe the details of the learning of DCNN, which is carried out in
this section. Fig.3 shows the DCNN architecture in this experiment. This model is trained
with the CIFAR-10 training set (10 classes, 60, 000 images), and the classification accu-
racy is evaluated using the 10, 000 images [9, 10]. Each 32 × 32 [pixel] RGB image was
subtracted the per-pixel mean as preprocessing. In the BP training, stochastic gradient de-
scent with mini-batch of size 100 is used to update the parameters. In addition, the learn-
ing rate starts with 10−2, the momentum parameter is set to 0.9, and we anneal the learn-
ing rate with γ = 0.1 in 60, 000 and 65, 000 iterations. These implementations and learn-
ing methods follow caffe’s default settings [8], and this architecture has the same struc-
ture as cuda-convnet proposed by Krizhevsky. Since the almost cuda-convnet’s web page
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cannot be browsed now, please refer to caffe’s web page for details of network structure
(http://caffe.berkeleyvision.org/gathered/examples/cifar10.html).

[Fig. 3 about here.]

3.2 Evaluation Data

We randomly collected 100 images of each class from the test image of the CIFAR-10
dataset, 50 of which were used for learning linear SVM and the other half for making SVM
Histogram. Examples of the image used to create SVM Histogram is shown in Fig.4.

[Fig. 4 about here.]

3.3 Analysis of DCNN Feature Representation

First, the Fig.5 shows the classification accuracy of the model of Fig.3 learned with the
CIFAR-10 training dataset. After 70, 000 iterations training, this model has obtained about
82.0% classification accuracy, which is consistent with Krizhevsky’s report [10]. In addition,
it is expected that convergence of learning is seen even if we look at the transition of accuracy
from Fig.5.

[Fig. 5 about here.]

Next, we extracted the feature representation from the Conv layers and the spatial Pool
layers having the same structure as Neocognitron using the evaluation data described in
Subsection3.2. And we created SVM Histogram using these feature representation. Also,
to investigate the differences in the learning process, feature representation was extracted
from three types of DCNN, 1, 000, 10, 000 and 70, 000 iterations training. Fig.6 is the SVM
Histogram in the classification problem between the “airplane” class and “automobile” class.
In Fig.6, each row shows the same iteration and each column shows the same layer. And the
red histogram makes from the data of the airplane class, the blue one makes from the data
of the automobile class. From Fig.6, in the feature representation extracted from the lower
layer, class separation is hardly performed, but we can see that gradual separation is obtained
after going through the hierarchy. Furthermore, the features of the 70, 000 iterations, which
has advanced learning, histograms becomes narrower than those of the 1, 000 and 10, 000
iterations. In another word, we can guess that within-class variance of DCNN of 70, 000
iterations is smaller than other two DCNNs.

[Fig. 6 about here.]

In addition to the above qualitative evaluation, we also evaluate the result quantitatively
in following way. For the evaluation, we focus the separability of the histogram clusters.
We calculate within-class variances of the histograms, at first. Denoting the distace from the
SVM discrimination boudary as rc

i , where i and c mean the pattern and class ids respectively,
we can derive the witin-class variance s2 as

mc =
1
Ni

∑
i

rc
i , (4)

(sc)2
=
∑

i

(rc
i − mc)2, (5)

S =
∑

c

(sc)2. (6)



Support Vector Machine Histogram 7

For comparison, we also calculate the other separation criterion, that is the ratio between
within- and between-class variaces. This criterion is known as linear discriminatnt analsys
(LDA). We also calculate the value for the class c1 and c2 as Jc1 ,c2 as

Jc1 ,c2 =
(mc1 − mc2 )2

(sc1 )2 + (sc2 )2 (7)

J =
∑

(c1 ,c2)

Jc1 ,c2 , (8)

where the notation (c1, c2) in the summation means the whole combination of class pairs.
The upper part of the fig.7 shows the box plot of the ratio criterion J, and the lower part
shows the one for the S , which means the within-class variance histogram for all combi-
nations of SVM histograms. In each graph, the horizontal axis shows the layer index of
extracted feature representation, and the vertical one shows the criterion value. From the
upper part of the Fig.7, we can see the criterion J reduces through the transformation, and
the differences among the training epochs is not clear. From the lower part of Fig.7, same
as in the above qualitative evaluation, as the learning progresses, we can see that the SVM
Histogram becomes narrower and the within-class variance decreases more clear. We can
also see that especially the within-class variance in the Pool layer decreases remarkably.
In other words, it became clear that as the learning converged, the within-class variance of
SVM Histogram decreases and class separation was proceeding. Also, paying attention to
boxplot of DCNN that has performed 70,000 iterations learning, the within-class variance
of the Conv2 layer and the Conv3 layer has hardly changed, and seemingly the class separa-
tion has not progressed. However, looking at the Pool2 and 3 layers, it can be seen that the
within-class variance of the Pool3 layer is smaller than the Pool2 layer. Actually, from Fig.6,
also the histograms become narrower in the Pool3 layer than in the Pool2 layer, so it can be
said that better class separation has been achieved. From these facts, DCNN is thought to
be able to acquire characteristic expressions with better class separation performance when
the within-class variance of SVM Histogram shift while increasing or decreasing rather than
staying constant at a low level.

[Fig. 7 about here.]

4 Experiments for Large Scale Natural Image Dataset

In this section, we use CaffeNet [4] which has the almost same architecture as AlexNet to
learn ImageNet 2012 which is a large scale natural image dataset.

4.1 Training Details

Here, we describe details of DCNN learning performed in this section like Subsect. 3.1.
Fig.8 and Fig.12 show the architectures in this experiment. These models are trained with
the ImageNet 2012 training set (1.3million images, spread over 1000 different classes), and
the classification accuracies are evaluated using the 50, 000 images [2, 11].

Each RGB image was pre-processed by resizing 256 × 256 [pixel], subtracted the per-
pixel mean (across all images) and cropping out the 227 × 227 [pixel] from the center. In
the BP training, stochastic gradient descent with mini-batch of size 256 is used to update the
parameters. In addition, the learning rate starts with 10−2, the momentum parameter is set
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to 0.9, and we anneal the learning rate with γ = 0.1 for stepsize 150, 000 and stop training
after 450, 000 iterations.

[Fig. 8 about here.]

4.2 Evaluation Data

To evaluate the SVM histogram, we extract 50 images from each 10 classes of “Tench”,
“Goldfish”, “Brambling”, “Black swan”, “Tusker”, “Echidna”, “Platypus”, “Wallaby”, “Koala”,
and “Wombat” from the ImageNet 2012 validation dataset. From the 500 image, we divide
them into the 2 datasets. One is used for the linear SVM training, and the other is used for
the evaluation of the SVM histograms. Each dataset has 250 images without overlapping.
Fig.9 shows several examples used in the experiments.

[Fig. 9 about here.]

4.3 Evaluation of Class Separation

As described in the Subsect.4.2, we evaluate the SVM histogram with the subset of the
ImageNet 2012 dataset. Fig.10 shows the histograms results for the classifier of “Tench”
and “Goldfish” classes. Here, we used the CaffeNet with 450, 000 iterations training. In each
histogram, the horizontal axis shows the location of the data from the decision boundary,
where the origin indicates the decision boundary, and the vertical one shows the frequency
of the test class examples. The histograms of Conv1 to Pool5 layers feature representation
are shown from the upper left to the lower right. From Fig.10, in low layers of CaffeNet, the
class separation is not enough, however, we can see that it gradually improves through the
hierarchy. Also, in Pool2 and 5 layers, the histogram becomes narrower and it is understood
that the class separation is progressed, but in the Pool1 layer, it seems that the within-class
variance increases rather than decreases. In addition, we can see that class separation was
hardly advanced from the results of SVM Histogram in Conv3,4 and 5 layers.

[Fig. 10 about here.]

The lower part of the Fig.11 shows the box plot of the within-class variance histogram
S for all combinations of SVM histograms like Fig.7. In the figure, the horizontal axis
shows the layer index of extracted feature representation, and the vertical one shows the
within-class variance. From the lower part of the Fig.11, we can see that in the Pool2 and
5 layers the within-class variance is lower than that of the previous Conv2 and 5 layers and
the within-class variance decreases through each hierarchy. However, in the Pool1 layer,
the within-class variance does not decrease and it increases. We apply wilcoxon rank-sum
test for the feature representations between the Conv1 and Pool1 layers, and obtain the p-
value as 0.001529, so that, we can reject the null hypothetis. We also apply the test among
the Conv3, 4, 5 layers. As the results, We cannot reject the null hypothetis between Conv4
and Conv5 layers whose p-value is 0.9232. And in the Conv3 layer and subsequent layers,
although there are some variations in the within-class variance, not much fluctuation can be
seen.

[Fig. 11 about here.]
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5 Architecture Modification with SVM Histograms Analysis

From the result in the Sebsect.4.3, we focus on the following 2 points, that is, in the conven-
tional CaffeNet,

(i) Within-class variance is not reduced in the Pool1 layer.
(ii) The fluctuation of the within-class variances of Conv3,4,5 layers is small.

If the considerations we presented in Subsect.3.3 are correct, we ought to get better accuracy
if we can resolve these phenomena. Therefore, in the following, we modify the architecture
design of the CaffeNet by use of the analysis of the within-class variances. We assume
the shrinking the within-class variances through the layer development in the DCNN might
play an important role in the classification task. From the assumption, we can present several
solving points, those are

(i) The class separation is almost not proceeding at previous layer Conv1.
(ii) The Pooling processing has not been performed after Conv3,4 layer.

Therefore, we eliminate the Pool1 layer for the purpose of improving the degree of sepa-
ration in a low layer. As the result, the proposed structure of the DCNN becomes several
repeating the convolution operation twice. Elimination of the pooling layer means that the
detected feature location with convolution filter is preserved. In addition, the representation
becomes sensitive to the local deformation of the input pattern. Moreover, we consider the
shrinking the histogram evaluation for conv5 is not enough. In preceding, we apply wilcoxon
rank sum test for the representations between conv4 and conv5, and we cannot reject the dif-
ference. So that, we insert the Pool3 and 4 layers after the Conv3 and 4 layers respectively.
Inserting the pooling layer means that feature location information might be lost, however,
the representation becomes stable for the local deformation of the input pattern. The con-
ventional CaffeNet, the within-class variance of the Conv3 and 4 layer looks the same level,
so that, we insert the pooling layer in order to reduce the within-class variances. Showing
details of the new architecture in Fig.12.

[Fig. 12 about here.]

6 Experiments of New Architecture and Comparison

In this section, we compare CaffeNet and our proposed model of Fig.12 that trained by
ImageNet 2012.

6.1 Within-Class Variance of SVM Histogram

From our model training, we obtain the Fig.13, which is similar box plots of Fig.11. As
design guidelines, the within-class variance of DCNN reduced in the first of pooling layer,
which is described as “Pool2”. Moreover, the within-class variance much changes after layer
Conv3, which indicates the advance of pattern separation. These phenomena indicate that
we succeeded in eliminating the correction points which we presented.

[Fig. 13 about here.]
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6.2 Accuracy Evaluation

Fig.14 shows the accuracy comparison in the Top-1 and Top-5 accuracy of our model and
CaffeNet. In the learning iterations, we shrink the learing rate when we regard the accuracy
evaluation is in the plateu state. After changing learning late, the accuracy performances
are improved. After enough iterations training, our model indicates a higher classification
accuracy than CaffeNet. In order to check the difference between CaffeNet and our models,
we apply t-test for the last equiriblium states, and confirm the null hypothetis, which means
the achieved performances does not have differences, is rejected. The p-values for top-1 and
top-5 are 1.06 × 10−7 and 6.59 × 10−11 respectively. So our model can be regarded as the
successful model in the architecture design. In addition to that, the fact that DCNN with the
properties found in Subsect.3.3 have higher classification accuracy suggests that it support
the validity of the consideration presented in Subsect.3.3.

[Fig. 14 about here.]

7 Summary and Discussion

In this study, we proposed the SVM Histogram as a new analysis method of DCNN. By using
SVM Histogram, it is possible to acquire the spatial distribution of feature representation of
DCNN, and it becomes possible to grasp the pattern separation of each layer of DCNN. In
addition, we analyzed the progress of pattern separation in the learning process using SVM
Histogram, which showed that the histogram became narrower as learning progressed, and
in particular the histogram became narrower in the Pool layer.

Based on the above consideration, we proposed new guidelines for DCNN architecture
design. As a result, we found a model with higher classification accuracy for the ImageNet
2012 dataset than the conventional CaffeNet. Architecture design of DCNN has not been
made so much research, because it is difficult to determine the design guidelines, and the
architecture design of DCNN had been as a black box. However, by using the within-class
variance of SVM histogram, it has become possible to determine the guideline in architec-
ture design. The most important point is that the DCNN that is working as indicated by our
consideration shows higher classification accuracy suggests the validity of the considera-
tion we proposed in Subsect.3.3. We think that this fact gives a hint to the internal behavior
analysis of DCNN.

In addition, although our proposed model has similar DCNN archtecture known as
AlexNet [11] and Zeiler’s network et al. [18], our model is not superior to the classification
accuracy that they have reported. This is because in their approach is tuning the learning rate
manually, our proposed model and CaffeNet used in this work has learned to fix the stepsize
150, 000, so it is considered that our model cannot beat their reported accuracy.
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horizontal axis shows layer which extracted feature representation, the vertical axis shows the within-class
variance.



22 FIGURES

image size 227

filter size 11

stride 4

3

96

96

55

5

1 1

256

256

input image

3

384

13

256

13

6

contrast
norm.

contrast
norm.

3x3 max
pool

stride 2

3x3 max
pool

stride 2

4096
units

4096
units softmax

27

3x3 max
pool

stride 2

27

13

1
3

1
3

256384

13

Conv1 Conv2 Conv3 Conv4 Conv5

Pool2Pool1 Pool5

Fig. 8 Architecture overview of CaffeNet. In addition to the structure of Fig.1, Filter size, Stride and the
number of feature maps of Conv layer and Pool layer are additionally written.



FIGURES 23

Fig. 9 Some examples of ImageNet 2012 validation data of the data set that was used for the visualization.
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Fig. 10 The SVM histogram of Tench class and Goldfish class in CaffeNet with 450, 000 iterations training.
In each graph, the horizontal axis shows the distance from the decision plane, where the origin indicates the
decision boundary, and the vertical one shows the frequency of the test examples.
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Fig. 11 The upper part shows the criterion J for the feature representation of CaffeNet, The lower one shows
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Fig. 12 Overview of DCNN model that we proposed. Remove the Pool1 layer from CaffeNet, and insert a
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Fig. 13 The upper part shows the criterion J for the feature representation of our model. The lower one shows
the criterion S , which means the within-class variances. The horizontal axis shows layer which extracted fea-
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has decreased in all Pool layer.
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Fig. 14 Comparison of the the accuracy performances of our model and the CaffeNet. In the figure, the left
shows the one for the Top-1 and the right one shows the Top-5 evaluations respectively. In the learning, the
learning rate, which starts at 0.01, chages to 0.001 and 0.001in the 15, 000 and 30, 000 iterations respectively.
The vertical axis shows classification accuracy and the horizontal axis shows the number of iterations. After
enough iterations training, our model indicates a higher classification accuracy than CaffeNet.


