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Abstract: We treat an image restoration problem with a Poisson noise channel using a Bayesian framework. The
Poisson randomness might be appeared in observation of low contrast object in the field of imaging. The noise ob-
servation is often hard to treat in a theoretical analysis. In our formulation, we interpret the observation through the
Poisson noise channel as a likelihood, and evaluate the bound of it with a Gaussian function using a latent variable
method. We then introduce a Gaussian Markov random field (GMRF) as the prior for the Bayesian approach, and
derive the posterior as a Gaussian distribution. The latent parameters in the likelihood and the hyperparameter in the
GMRF prior could be treated as hidden parameters, so that, we propose an algorithm to infer them in the expectation
maximization (EM) framework using loopy belief propagation (LBP). We confirm the ability of our algorithm in the
computer simulation, and compare it with the results of other image restoration frameworks.
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1. Introduction

The technique of the noise reducing, which is called image
restoration in the field of digital image processing, is an impor-
tant in the meaning of the pre-processing. In order to reduce the
noise, we should focus several clues for image property. The clas-
sical methods, such like the Gaussian or median filter methods,
are focused on the similarity of the neighbor pixels. The total-
variation method also focuses the similarity of the nearest pixel
values within the measure of L1 distance [1]. In these decade, a
lot of image restoration procedure were also proposed. Introduc-
ing image-block similarity instead of pixel-pair similarity, Dabov
et al. proposed a block matching method called BM3D that re-
duces the noise with less degrading edge-like features [2]. Ahron
et al. proposed decomposing the image into the weighted sum of
several basis with introducing the clues of the sparse representa-
tion [3].

From the theoretical viewpoint of statistical inference, these
clues could be considered as knowledge, which is called prior, for
the natural images. Thus, it is natural to introduce Bayesian in-
ference into the image restoration. In the framework of Bayesian
image restoration, additive white Gaussian noise (AWGN) was
mainly discussed as the image corrupting process [4], [5], [6], [7],
[8], since the analytical solution could be derived explicitly for
the AWGN. However, in the real world, the noise corruption pro-
cess often could not be described as such Gaussian observation.
For example, we could treat the low contrast object observation,
such like night vision, as a Poisson noised observation, since the
observation of photons might be expressed as a rare event. The
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Poisson noised observation also appears in some kinds of medical
imaging like positron emission tomography (PET).

The Poisson image restoration methods were also proposed in
these decades [9], [10], [11], [12], [13]. Figueiredo & Bioucas-
Dias designed the objective function as the the likelihood function
with several penalized term, and optimized the objective function
with the alternating directional method of multipliers [11]. Ono &
Yamada proposed optimization of the similar objective function
by use of hybrid steepest decent method [13]. The other methods
also designed the similar objective function for their applications.

These objective functions are defined by the likelihood func-
tion of Poisson observation with some penalized term. In the
Bayesian manner, regarding such penalty term as a prior, we
can consider the penalized method as a maximization of a pos-
teriori (MAP) method. MAP method is a effective strategy for
the image restoration, however, the strength balance between
the prior and the likelihood is hard to determine in its frame-
work. On the contrary, Bayes inference could determine the
strength of the penalized term naturally as the hyperparameter
inference [4], [6], [7], [8].

In this study, we treat a Poisson corrupted image restoration
problem, and solve it in the manner of the Bayesian approach.
The Bayesian approach also requires both likelihood and prior
probability. We introduce the observation process as a likelihood,
and also introduce Gaussian Markov random field (GMRF) as a
prior after the fashion of the several works [4], [6].

Assuming the Poisson corruption observation makes difficult
to derive the posterior probability in analytic form, since the
Poisson variable take discrete and non-negative value. Thus,
we introduce a latent variational approximation in the inference
derivation [14], [15], [16], [17], [18], [19], [20]. In this study,
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we transform the Poisson corruption process as the correspond-
ing Bernoulli process, and introduce local latent variables to ap-
proximate the observation process as the Gaussian function for
the likelihood in the Bayesian approach [17]. Once, we evalu-
ate the observation likelihood as a Gaussian function, we can
derive the posterior probability easily [19], [20]. In this formu-
lation, we should introduce several latent parameters to describe
the observation. In order to infer them, we introduce a expecta-
tion maximization (EM) algorithm [21], [22], which requires an
iterative inference. Our previous work shows the preliminary re-
sults [19], [20] of this paper. In this paper, we refine the formula-
tion of Bayesian inference of Ref. [19], and evaluate the acceler-
ated results of Ref. [20] using several images with comapring of
other methods.

In the following, we formulate the Bayesian image framework
in Section 2 at first. After that, we confirm the abilities of our
approach with computer simulation in Section 3. At last, we will
conclude and summarize our approach in Section 4.

2. Bayesian Formulation

Our method is based on the Bayesian approach, so that, we ex-
plain both image observation process and prior probability in the
following. Before the formulation, we define several notations.
We consider the 2-dimensional image whose size are Lx and Ly,
so that the total number of pixels M is described as M = LxLy.

2.1 Image Observation Process
The digital image is usually defined by the 2-dimensional pixel

array. In the observation, we assume the observation for each
pixel is independent, so that we consider single pixel observation
at first. We consider each pixel has Poisson parameter λi where i

means the position of the pixel. Denoting the observed pixel value
as zi, which means the number of of photons for the pixel posi-
tion i, we regard the observation process as the following Poisson
distribution:

p(zi | λi) =
(λi)zi

zi!
exp(−λi). (1)

Considering the Poisson process, Watanabe et al. treat the corrup-
tion process as a Bernoulli process, which counts the number of
on-off event in the proper time bins [17]. Thus, we can translate
Eq. (1) as the binomial distribution form:

p(zi | ρi) =

(
K
zi

)
(ρi)

zi (1 − ρi)
K−zi , (2)

where λi = Kρi, and K means the upper limit of the counting. In
this formulation, we can confirm Eq. (2) converges to the Poisson
distribution Eq. (1) under the condition K → ∞.

The parameter ρi in Eq. (2) is a non-negative parameter, which
is just hard to treat for us, so that we introduce the logit transform
into the parameter ρi, that is:

xi =
1
2

ln
ρi

1 − ρi
, (3)

and obtain the conditional probability for the condition xi as

p(zi | xi) =

(
K
zi

)
exp((2zi − K)xi − K ln 2 cosh xi). (4)

Fig. 1 Comparison of log-likelihood curves: The solid curve shows the true
log-likelihood and both dotted and dashed are the variational curves.

Hence, the image corruption process can be interpreted as ob-
serving the zi under the condition of xi. Note that Eq. (4) is not a
function of a observed value zi but a parameter xi.
2.1.1 Evaluation with Local Latent Variables

The term “ln 2 cosh xi” in the Eq. (4) looks hard to tract for
analysis. Thus, in this study, we introduce a latent variable eval-
uation [14], [17]. Palmer et al. proposed to evaluate the lower
bound of super-Gaussians with multiplied form of the Gaussian
distribution and concave parameter function [14], that is, any
super-Gaussian, which is denoted by p(u) = exp(−g(u2)) where
g(·) is a concave function, could be described as

p(u) = exp(−g(u2)) (5)

= sup
ξ>0
ϕ(ξ)N

(
u | 0, ξ−1

)
, (6)

ϕ(ξ) =

√
2π
ξ

exp
(
g∗

(
ξ

2

))
. (7)

The function pair g(u) and g∗(ξ) is a convex conjugate relation-
ship which is derived from Legendre’s transform

g(u) = inf
ξ>0
ξu − g∗(ξ), (8)

g∗(ξ) = inf
u>0
ξu − g(u). (9)

Equation (6) consists of the Gaussian part for u and the non-
Gaussian part described as the function ϕ(ξ) where ξ is a
latent-parameter. We evaluate the bound comes from the
term ln 2 cosh xi in the likelihood Eq. (4) with substitution of

ln 2 cosh xi = ln 2 cosh
√

u2
i = g(u

2
i ). Introducing the latent pa-

rameter form, we obtain the upper bound as:

ln 2 cosh xi ≤ tanh ξi
2ξi

(x2
i − ξ2i ) + ln 2 cosh ξi, (10)

where ξi is the latent parameter for the i-th pixel. Figure 1 shows
the comparison of log-likelihood curves. The solid curve shows
the true log-likelihood, that is, 2(z − K)x − K ln 2 cosh x + ln

(
K
z

)
where K = 7 and z = 1. The dashed and dotted ones show the la-
tent variational curves where ξ = −0.25 and ξ = 1.5 respectively.
We can see the upper bound of each latent variational curve is true
log-likelihood function. Thus, we introduce the latent variational
method into Eq. (4), we obtain the lower bound of the likelihood
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function:

p(zi | xi)

≥
(
K
zi

)
exp((2zi − K)xi − K

tanh ξi
2ξi

(x2
i − ξ2i ) + ln 2 cosh ξi)

= pξi (zi|xi) (11)

Assuming the independence for each pixel observation, we can
easily evaluate the lower bound of whole image corruption pro-
cess:

p(z | x) =
∏

i

p(zi | xi)

≥
∏

i

(
K
zi

)
exp

(
−1

2
xTΞx + z′Tx

)

exp

⎛⎜⎜⎜⎜⎜⎝1
2
ξTΞξ − K

∑
i

ln 2 cosh ξi

⎞⎟⎟⎟⎟⎟⎠
= pξ(z | x), (12)

where z′ means observation vector

z′ = (2z1 − K, · · · , 2zi − K, · · · , 2zM − K)T , (13)

and ξ means the collection of latent parameter {ξi}, and matrix Ξ
means a diagonal matrix whose components are {K tanh ξi

ξi
}. Thus,

we regard the lower bound of the likelihood pξ(z | x) as the ob-
servation process which is denoted as a Gaussian form of x.

2.2 Prior Probability
Introducing the Bayesian inference requires several prior prob-

ability for the image in order to compensate for the loss of infor-
mation through the observation. In this study, we assume a Gaus-
sian Markov random field (GMRF) [4] for the prior. The GMRF
prior is one of the popular one in the field of image restoration,
and it is not the state-of-art prior in the meaning of the reducing
noise performance. However, the GMRF is easy to treat in the
analysis, so that we apply it in this study. Usually, we define the
GMRF as the sum of neighborhood differential square of parame-

ters
∑

(i, j)

(
xi − x j

)2
where xi and x j are neighborhood parameters.

The energy function and the prior probability for the GMRF can
be described as following:

Hpri(x;α, h) =
α

2

∑
(i, j)

(xi − x j)
2 +

h
2

∑
i

x2
i (14)

=
1
2

xt(αΛ + hI)x (15)

p(x|α, h) =
1

Z(α, h)
exp

(
−Hpri(x;α, h)

)
, (16)

Z(α, h) =
∫

dx exp(−Hpri(x;α, h))

=
√
|2π(αΛ + hI)−1| (17)

where the sum-up of (i, j) means the neighborhood pixel indices,
and the matrix Λ and I mean the adjacent and identical matrices
respectively. In Eq. (14), the first term means the GMRF part and
the second means the Gaussian prior for the zero-center value for
stable calculation.

2.3 Image Restoration Algorithm with Posterior
From the observation Eq. (12) and the prior Eq. (16), we can

derive approximated posterior as

pξ(x | z, α, h) ∝ pξ(z | x) p(x | α, h), (18)

and the observation is evaluated with the latent-valued form, so
that we can derive the approximated posterior as Gaussian distri-
bution:

pξ(x | z, α, h) ∼ N
(
x | m, S −1

)
, (19)

S = αΛ + hI + Ξ, (20)

m = S −1 z′. (21)

Considering the inference parameter of x as the posterior mean
of the x, that is x̂ = 〈x〉, we can obtain the inference parameter
explicitly:

〈x〉 =
∑

x

x pξ(x | z, α, h) = m. (22)

2.4 Inference of Hyperparameters and Latent Variables
In order to obtain appropriate restoration with Eq. (22), the

hyper-parameters α, h, and the latent variables {ξ} should be ad-
justed properly. Hereafter we introduce the notation θ = {α, h, ξ}
for convenience. In order to solve, we applied a expectation max-
imization (EM) algorithm for inferring these parameters θ. EM
algorithm consists of two-step alternate iterations for the system
that has hidden variables [21], [22]. Assuming the notation t as
the each time step, the EM algorithm could be described as the
following two-steps:
• E-Step: Calculate Q-function that means the average of the

likelihood function for the given parameter θ(t):

Q(θ | θ(t)) = 〈ln p(x, z | θ)〉x|θ(t) (23)

• M-Step: Maximize the Q-function for θ, and the arguments
are set to the next hyper-parameters θ(t+1):

θ(t+1) = argmax
θ
Q(θ | θ(t)) (24)

Neglecting the constant term for the parameter θ, we can derive
the Q-function in the E-step as:

Q(θ | θ(t)) = −1
2

(m(t)T
S m(t) + Tr S S (t)−1

) − 1
2

ln |αΛ + hI|

+
1
2
ξTΞξ − K

∑
i

ln 2 cosh ξi (25)

S (t) = α(t)Λ + h(t)I + Ξ(t) (26)

m(t) = S (t)−1
z′ (27)

In order to maximize the Q-function in the M-step, we solve
the saddle point equations ∂Q

∂α
= 0, ∂Q

∂h = 0, and ∂Q
∂ξi
= 0 for any i.

Thus, we obtain∑
i

ηi

αηi + h
= m(t)T

Λm(t) + Tr ΛS (t)−1
, (28)

∑
i

1
αηi + h

= ‖m(t)‖2 + Tr S (t)−1
, (29)

ξi =

√
m(t)

i

2
+ S (t)−1

ii , (30)
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Algorithm 1 Poisson corrupted image restoration using EM al-
gorithm

1: Set the initial hyper-parameters α(0), ξ(0), and h

2: t ← 0

3: repeat

4: Get mean m(t)and accuracy S (t) for the posterior Eq. (21)

S (t) = α(t)Λ + h + Ξ(t)

m(t) = S (t)−1
z′

5: Update parameters α and {ξi}

ξ(t+1)
i =

√
m(t)

i

2
+ S (t)−1

ii

1
α(t+1)

=
1

M − 1

(
m(t)T
Λm(t) + Tr ΛS (t)−1

)
6: t ← t + 1

7: until restoration image {mi} is converged.

8: x̂← m as the restored image

9: λ̂i ← Kρ(x̂i) where ρ(·) is the inverse logit transform: ρ(x̂i) = ex̂i/(ex̂i +

e−x̂i ).

where {ηi} are eigenvalues of the adjacent matrix Λ and S (t)−1
ii is

the (i, i)th diagonal component of the matrix S (t)−1
.

In order to obtain the exact hyper parameters α and h, we have
to solve Eqs. (28) and (29) simultaneously, however, it makes in-
creasing computational cost. Thus, hereafter, we assume the hy-
perparameter h is fixed and given as h � α. Then, we obtain the
inference of the hyperparameter α as

1
α
=

1
M − 1

(
m(t)T
Λm(t) + Tr ΛS (t)−1

)
, (31)

since {ηi}, which are the eigenvalues of the adjacent matrix Λ,
only has a zero component and other components are positive
values. Putting all of them in together, we obtain the Poisson
corrupted image restoration algorithm as the Algorithm 1.
2.4.1 Approximating Posterior Mean with Loopy Belief

Propagation
In the Algorithm 1, each E-step requires the inverse of accuracy

matrix S (t)−1
= (Ξ(t) +α(t)Λ+ h(t)I)−1 to calculate the parameters.

In general, the computational cost for inverse of a matrix that size
is M × M requires O(M3) order. In this study, we assume the
restoring image size is M = Lx × Ly, so that, in the meaning of
calculation scalability, the reduction of the cost is important for
the application

In order to reduce the calculation cost, we introduce the loopy
belief propagation (LBP) into the E-step in the algorithm. In the
manner of the Gaussian graphical model, the efficacy of the LBP
were confirmed [6], [20], [23]. Our approximated posterior, that
is Eq. (18), is expressed as a kind of Gaussian form, so that we
can apply the LBP for the restoration. For applying LBP, we
modify the evaluation of restoration value described as Eq. (22)
to the marginal posterior pξ(xi | z, α, h) mean (MPM):

x∗i = 〈xi〉MPM =

∫
dxi xi pξ(xi | z, α, h). (37)

Obtaining the marginal posterior mean, we apply a local message
passing algorithm defined by LBP. Hereafter, for convenience,
we introduce the following notations:

Algorithm 2 Poisson corrupted image restoration using EM al-
gorithm with LBP

1: Set the initial hyper-parameters α(0), ξ(0), and h

2: t ← 0

3: repeat

4: Set β(t)
i = K

tanh ξ(t)i

ξ(t)i

, and y(t)
i = (2zi − K)/β(t)

i .

5: Carry out the LBP, where update Eqs. are (43) and (44), under the

given hyper-parameters α(t), {β(t)
i }.

6: After convergence of the LBP, solve several statistics: the restoration

pixel values {mi}, those of variances {(σi)2}, and the correlations {si j}:

mi =
β(t)

i y
(t)
i +

∑
j∈N(i) γ j→iμ j→i

β(t)
i + h +

∑
j∈N(i) γ j→i

(32)

σ2
i =

⎛⎜⎜⎜⎜⎜⎜⎝β(t)
i + h +

∑
j∈N(i)

γ j→i

⎞⎟⎟⎟⎟⎟⎟⎠
−1

, (33)

si j =
(α(t) − γi→ j)(α(t) − γ j→i)

α(t)3
. (34)

7: Update the hyper-parameters:

ξ(t+1)
i =

√
mi

2 + σi
2 (35)

1
α(t+1)

=

(∑
(i, j)(mi − mj)2 + σ2

i + σ
2
j − 2si j

)
M − 1

. (36)

8: t ← t + 1

9: until restoration image {mi} is converged.

10: x̂← m as the restored image

11: λ̂i ← Kρ(x̂i) where ρ(·) is the inverse logit transform: ρ(x̂i) = ex̂i/(ex̂i +

e−x̂i ).

Fig. 2 Schematic diagram of message passing of the LBP: The LBP algo-
rithm can be applied to infer the marginalized posterior. Each circle
shows the pixel, which has 4 nearest neighbors. For instance, consid-
ering the message from the jth unit to i-th unit namedM j→i(xi), the
message integrate the messages from the jth nearest neighbor except
i-th.

βi = K
tanh ξi
ξi
, (38)

yi =
2zi − K
βi
. (39)

Then we obtain the observation likelihood Eq. (11) for i-th node
as

p(yi | xi) ∝ exp
(
−βi

2
(yi − xi)

2
)
. (40)

The LBP algorithm is a kind of local message passing. Here,
we denote the message from the jth node to the i-th node as
M j→i(xi). Figure 2 shows the schematic diagram of the message
passing. Here, considering the messageM j→i(xi), we should in-
tegrate the message of the jth connected units except i-th. In each
LBP iteration, this message passing is carried out for each con-
nection. In the GMRF case, the message can be derived as
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M j→i(xi) ∝
∫

dx j p(y j | x j) exp

(
−α

2
(xi − x j)

2 − h
2

x j
2

)
∏

k∈N( j)\i
Mk→ j(x j), (41)

where N( j) means the collection of the connected units to the jth
unit, and N( j)\i means the collection except i-th unit. From the
form of the integral in Eq. (41), we can regard the message from
the jth node to the i-th node as the following Gaussian

M j→i(xi) ∝ N
(
xi | μ j→i, γ j→i

−1
)
. (42)

Substituting the message form Eq. (42) into Eq. (41), we can de-
rive the message update rule as

μ j→i =
β jy j +

∑
k∈N( j)\i γk→ jμk→ j

β j +
∑

k∈N( j)\i γk→ j + h
(43)

1
γ j→i

=
1
α
+

1
β j +

∑
k∈N( j)\i γk→ j + h

. (44)

The LBP requires iterations for convergence of the message val-
ues. After the convergence, the marginal posterior required for
the EM algorithm can be evaluated as

p(xi | y, α, h) ∝ p(yi | xi)
∏
j∈N(i)

M j→i(xi), (45)

p(xi, x j | y, α, h) ∝ p(yi | xi)p(y j | x j)

exp

(
−α

2
(xi − x j)

2 − h
2

(x2
i + x2

j )

)
∏

k∈N(i)\ j

Mk→i(xi)
∏

l∈N( j)\i
Ml→ j(x j). (46)

Thus, the Q-function for the proposing EM algorithm is

Q(θ | θ(t)) = 〈ln p(x, y | θ)〉MPM

=
1
2

∑
i

ln βi −
∑

i

βi

2

〈
(yi − xi)

2
〉

MPM

+
M − 1

2
lnα − α

2

∑
(i, j)

〈
(xi − x j)

2
〉

MPM
, (47)

where 〈·〉MPM means the average over the marginal posterior
(MPM) denoted as Eqs. (45) and (46). Deriving Eq. (47), we also
assume the hyper-parameter h is enough small h/α � 1.

Let put them all together, the proposing LBP approximated so-
lution is shown as the algorithm 2.

3. Computer Simulation Results

We evaluate the restoration performance with computer sim-
ulation. In the following, at first, we compare our latent varia-
tional restoration abilities between the EM method solution (al-
gorithm 1) and its LBP approximated one (algorithm 2) from the
viewpoint of the time consumption and restored image quality.
After that, we compare our latent variational restoration with LBP
solution (algorithm 2) with the conventional median filter restora-
tion and the standard Gaussian LBP (GLBP) solution [6].

For the evaluation, we extract several image patches from the
standard images, called “Cameraman,” “Lena,” “Barbara,” “Fin-
gerprint” and “Peppers.”

We resample each image into the half-size with weak Gaussian

blurring in order to increase smoothness since we assume observ-
ing object would be smooth. We regard the resampled images as
the observing images, and extract several image patches with size
of Lx × Ly. The Poisson corruption process is influenced with the
contrast of the observing images, so that, we control the maxi-
mum and minimum of the image in the simulation. Here, we re-
gard the patch image as I = {Ii}, where i means the position of the
pixel. In the simulation, in order to control the contrast of the im-
age, we introduce the pixel value range (λMin, λMax) which mean
the minimum and the maximum values of the Poisson parameters
image. Assuming the minimum and the maximum values of the
patch image as IMin, and IMax respectively, we define the source
image λ∗ of the i-th pixel λ∗i as a linear transform (see Fig. 3 (e)):

λ∗i =
λMax − λMin

IMax − IMin
(Ii − IMin) + λMin. (48)

Thus, the difference between λMax and λMin becomes large, the
source image becomes high contrast which means low noise case.
Hereafter, we fix the λMin = 2, and only control the parameter
λMax as the strength of the accuracy of the observation.

3.1 Evaluation of LBP Restoration Abilities
We compare our latent variational solutions between the exact

EM algorithm (algorithm 1) and its LBP approximated one (al-
gorithm 2). First, we compare them from the viewpoint of the
hyperparameter inference and the restoration quality. The results
of the hyperparameter α, which can be regarded as the strength of
the prior Eq. (16), is shown as Table 1 We use a cropped image
of “cameraman” with patch size Lx = Ly = 64 as the source
image, and apply several contrast parameters λMax, which are
chosen from {20, 40, 80, 160}, to control the noise strength. The
smaller the parameter λMax becomes, the larger the noise strength
becomes. We make 10 trials for each condition, and show the re-
sults of the averages with standard deviation in the table. From
the table, We can see the results in each λMax are almost same.

We also compare these algorithms with restored image quality
by use of the peak signal to noise ratio (PSNR). The PSNR is de-
fined as a kind of similarity between the reference image λ∗ and
the test image λ as:

PSNR(λ, λ∗) = 10 log10

(
max λ∗ −min λ∗

)2

MSE(λ, λ∗)
, (49)

MSE(λ, λ∗) =
1
M

∑
i

(λi − λ∗i )2, (50)

where M means the image size M = LxLy. Table 2 shows the re-
sults. In each condition, we show PSNRs of the noise corrupted
values PSNR(z, λ∗), and restoration results PSNR(λ̂, λ∗) for al-
gorithms 1 and 2. We can see the PSNRs of restored image of
algorithms 1 and 2 take very similar values, and the PSNRs are
improved from the observed one.

At last, we compare the computational time costs of algo-
rithms 1 and 2. The computer simulation is carried out on the
Apple MacBook Pro, which has 2.7 GHz Intel Core i7, 8 GBytes
1.6 GHz DDR3 memory, with OS version is OS X 10.9.2. We im-
plement these algorithms with R language which version is 3.0.0.

Figure 4 shows the result. The horizontal axis shows the image
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Fig. 3 Images for evaluation: From (a) to (d) show the well known evaluation image obtained from stan-
dard image database [5]. (e) shows an example of source image cropped from “Peppers.” The
cropping size are Ly for vertical and Lx for horizontal. The image intensity is controlled by the
parameters λMin and λMax shown as Eq. (48).

Table 1 Comparison of inferred hyperparameters α between the algorithm
1 and 2. We use a cropped image of “cameraman” with patch
size Lx = Ly = 64, and apply several contrast conditions, that
is, λMax = {20, 40, 80, 160}. Each result is evaluated with 10 trials.

Algorithm 1 Algorithm 2

λMax = 20 54.06 ± 1.39 53.94 ± 1.38
λMax = 40 16.34 ± 0.50 16.34 ± 0.50
λMax = 80 7.61 ± 0.09 7.61 ± 0.09
λMax = 160 4.61 ± 0.07 4.61 ± 0.07

Table 2 Comparison of restored image quality with PSNR Eq. (49): Each
column shows the PSNR for corrupted image, for restored with the
algorithm 1 and 2 respectively. The trial conditions are same with
the one for Table 1.

Corrupted Algorithm 1 Algorithm 2

λMax = 20 16.82 ± 0.12 18.62 ± 0.13 18.62 ± 0.13
λMax = 40 20.44 ± 0.15 21.86 ± 0.12 21.86 ± 0.12
λMax = 80 23.86 ± 0.18 24.52 ± 0.18 24.52 ± 0.18
λMax = 160 27.30 ± 0.15 27.58 ± 0.16 27.58 ± 0.16

scale of one side Lx, which equals to the other side Ly. Thus, the
horizontal axis shows the square root of the total number of im-
age pixels. The vertical one shows the elapsed time of seconds for
the algorithms within the log scale. In the figure, the solid lines
show the results for the LBPs approximation (algorithm 2), and
the dashed one show the exact solution (algorithm 1) which solve
the inverse of accuracy matrix in each E-step. In the exact solu-
tion expressed as the dashed lines, the larger the image size is, the
larger elapsed time becomes. We can also see the corruption level
does not affect to the calculation cost for the algorithm 1. On the
contrary, in the LBP solutions, the calculation cost looks insensi-
tive to the image size. Instead, the LBP solutions are affected to
the corruption level, when it becomes large, which means small

Fig. 4 Comparison of restoring times: The vertical axis shows the log-
scaled elapsed time [sec] for the restoration, which means conver-
gence of the EM algorithms. The horizontal one shows the image
size Lx(= Ly) [pixels], which means image size of one side. Each
solid line shows the result for the LBP restoration, and dashed line
line shows the result for the exact solution for the algorithm 1. For
both LBP and exact method, we investigate the convergence time for
several noise levels, which are λMax = {20, 40, 80, 160}.

λMax, the more calculation cost is required. However, in the large
scale image, the LBP solutions has advantage to the exact solu-
tions.

From these comparisons, we show the LBP approximated solu-
tion (algorithm 2) has similar performance to the algorithm 1, in
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Fig. 5 Comparison of restored image examples: The first column shows the original image λ with
Lx = Ly = 64. The second shows the corrupted images through the Poisson observation z where
the contrast parameter λMax = 40. The third shows the image restoration results with Median
filter with 3 × 3 size. The fourth shows the results of BM3D [2]. The fourth shows the results of
Gaussian LBP [6]. The fifth shows our latent variational method results.

the meaning of the image restoration quality in spite of the lower
computational time cost. Thus, we only discuss about the LBP
approximated solution following section.

3.2 Comparison with Other Image Restoration Methods
In this section, we compare the restored image quality with

the algorithm 2 and other image restoration methods, which are
conventional median filter, BM3D method [2], and the Gaussian
LBP (GLBP) solution [6]. In these restoration methods, we as-
sume restoration of the parameter {λi} from the observed values
{zi}. Thus, we apply the median filter, BM3D and GLBP methods
to the observation {zi} in order to obtain the restoration result {λi}.
Especially, in the Gaussian LBP solution, the observation of the
image assumes the pixel values {zi} are the result of the observa-
tion of the corresponding parameters {λi} through the Gaussian
channel, that is,

p(z | λ) =
∏

i

p(zi | λi, βG), (51)

p(zi | λi, βG) =

√
βG

2π
exp

(
−βG

2
(zi − λi)

2
)

(52)

instead of Eq. (1). In the GLBP solution, we also adopt the GMRF
as the prior

p(λ | αG, hG) =
1

ZGpri(αG, hG)
exp

(
−HGpri(λ | αG, hG)

)
,

(53)

instead of Eq. (16), where

HGpri(λ | αG, hG) =
αG

2

∑
(i, j)

(λi − λ j)
2 +

hG

2

∑
i

λi
2, (54)

ZGpri(αG, hG) =
∑
λ

exp
(
−HGpri(λ | αG, hG)

)
. (55)

The hyperparameters αG, βG, and hG are inference parameters
which are solved by the EM algorithm using LBP [6].

Figure 5 shows the comparison of result examples. In the
figure, we show several cropped images with Lx = Ly = 64
from “cameraman,” “barbara,” “fingerprint,” and “peppers.” In
the evaluation, we fix the contrast control parameter λMax = 40
that controls the noise strength in the Poisson corruption. The first
column shows the original images, and the second one shows the
Poisson corrupted images. The third shows the conventional me-
dian filter restoration results with the size of 3×3 filter. The fourth
shows the restoration results with BM3D method [2]. The BM3D
method is one of the state-of-art method for the AWGN, however,
in this case, the variance of noise is not uniform in the image so
that the estimation of thresholding parameter looks insufficient.
The fifth shows the restoration results with GLBP method, and
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Table 3 Restoration quality evaluation with PSNR [dB] in Fig. 5 and me-
dian filters.

Corrupted Median BM3D GLBP Ours

Cameraman 20.24 16.76 18.75 20.72 21.92
Barbara 19.18 22.10 21.91 22.48 23.89
Fingerprint 19.47 13.83 18.75 19.86 21.85
Peppers 18.44 21.38 21.63 21.03 22.81

the sixth shows the one with our LBP method. We can see our re-
sult images are more smooth than those of the GLBP results. Ta-
ble 3 shows the PSNR evaluations for each original image. Our
latent variational method shows better restoration results rather
than those of the GLBP solutions. We also restoration results
with conventional median filter with 3×3 in Table 3. The median
filter restoration make the image too much smooth, so that the
PSNR evaluation tends to be the small value.

In order to compare the quantitative restoration evaluations, we
introduce the following improvement of PSNR (ISNR) index for
two type of restoration results λ1 and λ2,

ISNR(λ1, λ2; λ∗) = PSNR(λ2, λ
∗) − PSNR(λ1, λ

∗)

= 10 log
MSE(λ1, λ

∗)
MSE(λ2, λ

∗)
, (56)

where λ∗ means the ground-truth source image. This index shows
the improvement of the λ2 against the λ1 in the meaning of PSNR.
The positive index shows the improvement of the method λ2 from
λ1.

We evaluate ISNR between the noised image z and our re-
sults λours that is ISNR(z, λours), and also evaluate the one with
other restoration results, that is median filter result λMed, BM3D
restoration result λBM3D, and GLBP result λGLBP, with our result,
that is ISNR(λMed, λours) ISNR(λBM3D, λours) ISNR(λGLBP, λours)
respectively. In the image preparation, we crop 10 patch im-
ages with the size of Lx = Ly = 64 from random locations
of each original image shown in Fig. 3. Thus, the total number
for the evaluation images is 50 image patches. In the evalua-
tion, we apply several contrast parameter cases, that is λMax =

{20, 40, 60, 80, 100, 120, 140, 160}.
Figure 6 shows the improvement of our results for the cor-

rupted images z. The contrast parameter λMax, which denotes
the horizontal value of the figure, controls the noise strength of
the Poisson noise. In the figure, the boxplot shows the median,
which are described as the thick line in the box, with quantiles for
each contrast levels. we obtain 2 ∼ 3 [dB] improvement from the
corrupted image in the meaning of the median. From the range of
the control parameter λMax ≥ 40, our method shows good perfor-
mance, however, the result shows large quantile variance in the
λMax = 20. The reason of the large variance comes from the input
image property. The low improvement results only come from
the “fingerprint” input image, so that, high spatial frequency with
low contrast image might prevent restoration.

We also show the comparison results with applying conven-
tional median filter. We apply 3 × 3 median filter for the noised
image z, and evaluate the PSNR with the original Poisson param-
eters λ. Figure 7 shows the results. The horizontal axis shows the
same range of Fig. 6, and the vertical one shows the ISNR with
the range of [−4, 15] [dB]. In many cases, applying the median

Fig. 6 PSNR improvement of our results λours from the observed image z.
The horizontal axis shows the contrast parameter λMax. The vertical
one shows the ISNR value whose range is [−4, 7] [dB]. The box-plot
shows the medians with quantiles.

Fig. 7 PSNR improvement of our results λours from the median filter results
λMed. The range of vertical axis is [−4, 15] [dB].

filter, the restored image becomes too much smooth, so that, the
PSNR evaluation becomes worse.

Figure 8 shows the improvement of our results for the BM3D
restoration [2]. The horizontal axis is identical to Figs. 6 and 7,
and the vertical shows the ISNR with range of [−4, 7] [dB]. In the
figure, the white circles show the outliers which differ twice the
standard deviation or more from each average. In the λMax = 20
case, the BM3D restoration looks better than that of ours. How-
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Fig. 8 PSNR improvement of our results λours from the BM3D solutions
λBM3D. The range of vertical axis is [−4, 7] [dB]. The white circles
show the outliers.

Fig. 9 PSNR improvement of our results λours from the GLBP solutions
λGLBP. The range of vertical axis is [−4, 7] [dB]. The white circles
show the outliers.

ever, in other cases, our method shows better performance.
Figure 9 shows the improvement of our results for the GLBP

restoration. This result also shows our method shows better re-
sults than that of those of the GLBP in the λMax ≥ 40. In the
range of λMax ≥ 40, we obtain 1 ∼ 2 [dB] improvement from the
GLBP solution in the meaning of the median. On the contrary, in
the λMax=20 case, almost all the restoration results of the GLBP are
better than those of ours. We consider the results comes from the

accuracy of the hyperparameter inference. In the GLBP method,
the noise variance, which is the inverse of the accuracy parameter
βG in Eq. (51), is a single parameter. In the low λMax case, the
variances of each observation zi might be described as a single
value. However, the differences of variances of the observation
values zi would be large when the contrast parameter λMax be-
comes large. As the result, the Gaussian model that is Eq. (51)
could not describe the observation value zi within a single hyper-
parameter βG. As the result, in many cases of the large λMax, the
inference value of the βG becomes large, which make low efficacy
of the prior.

4. Conclusion

In this study, we propose an image restoration method for Pois-
son corrupted image. Introducing the latent variable method,
we derive the corruption process, which denote the likelihood
function, as a Gaussian form. Using Bayesian image restoration
framework, we derive the posterior probability for the restora-
tion with introducing GMRF as a prior. The posterior includes
several hyperparameters α, h, and latent variables {ξi}. In order
to solve the restoration problem with determining these param-
eters, we construct an algorithm as the algorithm 1 in the man-
ner of the EM method. Thus, our algorithm could determine all
the parameters from the observed data z. The algorithm 1 re-
quires O(M3) computational cost. Hence, in order to accelerate
the algorithm, we approximate the posterior mean as the marginal
posterior mean, and derive LBP method for hyperparameter in-
ference that is described as the algorithm 2. We introduce the
two-body marginalized posterior described as Eq. (46) in order
to infer the correlation between connected two units denoted as
si j in Eq. (34). Without the two-body interactions, the inference
ignores the correlations, that is, si j = 0 for any indices. It is
identical to the naive mean field approximation. The naive mean
field approximation, which only applies the single-body marginal
posterior, occurs the underestimation of the hyperparameter of
α. The correlation si j update rule is derived as Eq. (34), which
only requires the local message, so that the cost for the inference
does not increase so much. Solving exact correlation between
two units requires considering not only the connected bodies ef-
fect but also all the other bodies effect. This is the reason for
the requiring the inverse of the accuracy matrix in the EM al-
gorithm. We only consider the two-bodies effect, however, the
hyper-parameter inference looks work well, and the restoration
performance becomes same or more than the that of the exact so-
lution in the previous work. Hence, we propose the LBP method
is a good approximation for our Poisson corrupted image restora-
tion framework.

In the computer simulation, at first, we compare the restoration
abilities of the algorithms 1 and 2. The algorithm 2 is a LBP ap-
proximated version of the latent variable method described as the
algorithm 1. From the viewpoint of the hyperparameter inference
and the quality of the restored image, we confirm these two algo-
rithms have similar abilities, however, the computational cost of
the algorithm 2 is lower than that of the algorithm 1.

Then, we compare our algorithm with other methods, that is,
median filter, BM3D and, GLBP restorations [2], [6]. The BM3D
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and GLBP method regards the obtained variables z are observed
from the Gaussian noise channel. In these solutions, the very low
contrast image (λMax = 20) shows slightly better restoration result
than that of ours, however, the larger contrast becomes, the lower
the performance becomes. From Eq. (40), our method could ex-
press the observation accuracy βi for each pixel value, however,
the GLBP solution has only single hyperparameter βG in Eq. (51).
The BM3D also assumes the variance of the pixels in a image
might be denoted as a single parameter in its algorithm. The vari-
ance and the mean of the Poisson observation, however, depends
on the single parameter λi, so that, the assumption of GLBP and
BM3D observation might not satisfy. As the result, in the GLBP
case, the βG tends to be overestimation. In the numerical evalua-
tion, our method shows better performance rather than that of the
GLBP except λMax = 20. Thus, our results suggests that consid-
ering the correct Poisson observation model is important as well
as the choosing of the prior.

Our latent variable method evaluate the Poisson likelihood
function as the Gaussian form. Thus, in future works, we can
easily extend our method into other image restoration framework.
For example, when we could express the the parameter values of
x as the some linear transformation:

x = As (57)

where A and s are the transformation matrix and the expression
vector respectively. Then, we could substitute it into Eq. (11) and
consider the prior for the transformed vector s such like sparse
prior, such like K-SVD [3].
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