9 research outputs found
Acute respiratory distress syndrome in the cardiothoracic patient: State of the art and use of veno-venous extracorporeal membrane oxygenation
Central Message: Acute respiratory distress syndrome after cardiopulmonary bypass can be managed with veno-venous extracorporeal membrane oxygenation
Acute respiratory distress syndrome in the cardiothoracic patient: State of the art and use of veno-venous extracorporeal membrane oxygenation
Central Message: Acute respiratory distress syndrome after cardiopulmonary bypass can be managed with veno-venous extracorporeal membrane oxygenation
The Association of Baseline Plasma SARS-CoV-2 Nucleocapsid Antigen Level and Outcomes in Patients Hospitalized With COVID-19
BACKGROUND: Levels of plasma SARS-CoV-2 nucleocapsid (N) antigen may be an important biomarker in patients with COVID-19 and enhance our understanding of the pathogenesis of COVID-19. OBJECTIVE: To evaluate whether levels of plasma antigen can predict short-term clinical outcomes and identify clinical and viral factors associated with plasma antigen levels in hospitalized patients with SARS-CoV-2. DESIGN: Cross-sectional study of baseline plasma antigen level from 2540 participants enrolled in the TICO (Therapeutics for Inpatients With COVID-19) platform trial from August 2020 to November 2021, with additional data on day 5 outcome and time to discharge. SETTING: 114 centers in 10 countries. PARTICIPANTS: Adults hospitalized for acute SARS-CoV-2 infection with 12 days or less of symptoms. MEASUREMENTS: Baseline plasma viral N antigen level was measured at a central laboratory. Delta variant status was determined from baseline nasal swabs using reverse transcriptase polymerase chain reaction. Associations between baseline patient characteristics and viral factors and baseline plasma antigen levels were assessed using both unadjusted and multivariable modeling. Association between elevated baseline antigen level of 1000 ng/L or greater and outcomes, including worsening of ordinal pulmonary scale at day 5 and time to hospital discharge, were evaluated using logistic regression and Fine-Gray regression models, respectively. RESULTS: Plasma antigen was below the level of quantification in 5% of participants at enrollment, and 1000 ng/L or greater in 57%. Baseline pulmonary severity of illness was strongly associated with plasma antigen level, with mean plasma antigen level 3.10-fold higher among those requiring noninvasive ventilation or high-flow nasal cannula compared with room air (95% CI, 2.22 to 4.34). Plasma antigen level was higher in those who lacked antispike antibodies (6.42 fold; CI, 5.37 to 7.66) and in those with the Delta variant (1.73 fold; CI, 1.41 to 2.13). Additional factors associated with higher baseline antigen level included male sex, shorter time since hospital admission, decreased days of remdesivir, and renal impairment. In contrast, race, ethnicity, body mass index, and immunocompromising conditions were not associated with plasma antigen levels. Plasma antigen level of 1000 ng/L or greater was associated with a markedly higher odds of worsened pulmonary status at day 5 (odds ratio, 5.06 [CI, 3.41 to 7.50]) and longer time to hospital discharge (median, 7 vs. 4 days; subhazard ratio, 0.51 [CI, 0.45 to 0.57]), with subhazard ratios similar across all levels of baseline pulmonary severity. LIMITATIONS: Plasma samples were drawn at enrollment, not hospital presentation. No point-of-care test to measure plasma antigen is currently available. CONCLUSION: Elevated plasma antigen is highly associated with both severity of pulmonary illness and clinically important patient outcomes. Multiple clinical and viral factors are associated with plasma antigen level at presentation. These data support a potential role of ongoing viral replication in the pathogenesis of SARS-CoV-2 in hospitalized patients. PRIMARY FUNDING SOURCE: U.S. government Operation Warp Speed and National Institute of Allergy and Infectious Diseases
Nonelective coronary artery bypass graft outcomes are adversely impacted by Coronavirus disease 2019 infection, but not altered processes of care: A National COVID Cohort Collaborative and National Surgery Quality Improvement Program analysisCentral MessagePerspective
Objective: The effects of Coronavirus disease 2019 (COVID-19) infection and altered processes of care on nonelective coronary artery bypass grafting (CABG) outcomes remain unknown. We hypothesized that patients with COVID-19 infection would have longer hospital lengths of stay and greater mortality compared with COVID-negative patients, but that these outcomes would not differ between COVID-negative and pre-COVID controls. Methods: The National COVID Cohort Collaborative 2020-2022 was queried for adult patients undergoing CABG. Patients were divided into COVID-negative, COVID-active, and COVID-convalescent groups. Pre-COVID control patients were drawn from the National Surgical Quality Improvement Program database. Adjusted analysis of the 3 COVID groups was performed via generalized linear models. Results: A total of 17,293 patients underwent nonelective CABG, including 16,252 COVID-negative, 127 COVID-active, 367 COVID-convalescent, and 2254 pre-COVID patients. Compared to pre-COVID patients, COVID-negative patients had no difference in mortality, whereas COVID-active patients experienced increased mortality. Mortality and pneumonia were higher in COVID-active patients compared to COVID-negative and COVID-convalescent patients. Adjusted analysis demonstrated that COVID-active patients had higher in-hospital mortality, 30- and 90-day mortality, and pneumonia compared to COVID-negative patients. COVID-convalescent patients had a shorter length of stay but a higher rate of renal impairment. Conclusions: Traditional care processes were altered during the COVID-19 pandemic. Our data show that nonelective CABG in patients with active COVID-19 is associated with significantly increased rates of mortality and pneumonia. The equivalent mortality in COVID-negative and pre-COVID patients suggests that pandemic-associated changes in processes of care did not impact CABG outcomes. Additional research into optimal timing of CABG after COVID infection is warranted
Recommended from our members
The prevalence of postacute sequelae of coronavirus disease 2019 in solid organ transplant recipients: Evaluation of risk in the National COVID Cohort Collaborative
Postacute sequelae after the coronavirus disease (COVID) of 2019 (PASC) is increasingly recognized, although data on solid organ transplant (SOT) recipients (SOTRs) are limited. Using the National COVID Cohort Collaborative, we performed 1:1 propensity score matching (PSM) of all adult SOTR and nonimmunosuppressed/immunocompromised (ISC) patients with acute COVID infection (August 1, 2021 to January 13, 2023) for a subsequent PASC diagnosis using International Classification of Diseases, 10th Revision, Clinical Modification codes. Multivariable logistic regression was used to examine not only the association of SOT status with PASC, but also other patient factors after stratifying by SOT status. Prior to PSM, there were 8769 SOT and 1 576 769 non-ISC patients with acute COVID infection. After PSM, 8756 SOTR and 8756 non-ISC patients were included; 2.2% of SOTR (n = 192) and 1.4% (n = 122) of non-ISC patients developed PASC (P value < .001). In the overall matched cohort, SOT was independently associated with PASC (adjusted odds ratio [aOR], 1.48; 95% confidence interval [CI], 1.09-2.01). Among SOTR, COVID infection severity (aOR, 11.6; 95% CI, 3.93-30.0 for severe vs mild disease), older age (aOR, 1.02; 95% CI, 1.01-1.03 per year), and mycophenolate mofetil use (aOR, 2.04; 95% CI, 1.38-3.05) were each independently associated with PASC. In non-ISC patients, only depression (aOR, 1.96; 95% CI, 1.24-3.07) and COVID infection severity were. In conclusion, PASC occurs more commonly in SOTR than in non-ISC patients, with differences in risk profiles based on SOT status