2,930 research outputs found

    Neron models of Green-Griffiths-Kerr and log Neron models

    Full text link
    For a variation of Hodge structure over a punctured disk, Green, Griffiths and Kerr introduced a N\'eron model which is a Hausdorff space that includes values of admissible normal functions. On the other hand, Kato, Nakayama and Usui introduced a N\'eron model as a logarithmic manifold using log mixed Hodge theory. This work constructs a homeomorphism between these two models.Comment: 17 page

    Probing for massive stochastic gravitational-wave background with a detector network

    Get PDF
    In a general metric theory of gravitation in four dimensions, six polarizations of a gravitational wave are allowed: two scalar and two vector modes, in addition to two tensor modes in general relativity. Such additional polarization modes appear due to additional degrees of freedom in modified gravity theories. Also graviton mass, which could be different in each polarization, is another characteristic of modification of gravity. Thus, testing the existence of additional polarization modes and graviton mass can be a model-independent test of gravity theories. Here we extend the previous framework of correlation analysis of a gravitational-wave background to the massive case and show that a ground-based detector network can probe for massive stochastic gravitational waves with its mass around ~10^{-14} eV. We also show that more than three detectors can cleanly separate the mixture of polarization modes in detector outputs and determine the graviton mass.Comment: 13 pages, 6 figure

    Ubiquitin carboxyl-terminal hydrolases are required for period maintenance of the circadian clock at high temperature in Arabidopsis

    Get PDF
    Protein ubiquitylation participates in a number of essential cellular processes including signal transduction and transcription, often by initiating the degradation of specific substrates through the 26S proteasome. Within the ubiquitin-proteasome system, deubiquitylating enzymes (DUBs) not only help generate and maintain the supply of free ubiquitin monomers, they also directly control functions and activities of specific target proteins by modulating the pool of ubiquitylated species. Ubiquitin carboxyl-terminal hydrolases (UCHs) belong to an enzymatic subclass of DUBs, and are represented by three members in Arabidopsis, UCH1, UCH2 and UCH3. UCH1 and UCH2 influence auxin-dependent developmental pathways in Arabidopsis through their deubiquitylation activities, whereas biological and enzymatic functions of UCH3 remain unclear. Here, we demonstrate that Arabidopsis UCH3 acts to maintain the period of the circadian clock at high temperatures redundantly with UCH1 and UCH2. Whereas single uch1, uch2 and uch3 mutants have weak circadian phenotypes, the triple uch mutant displays a drastic lengthening of period at high temperatures that is more extreme than the uch1 uch2 double mutant. UCH3 also possesses a broad deubiquitylation activity against a range of substrates that link ubiquitin via peptide and isopeptide linkages. While the protein target(s) of UCH1-3 are not yet known, we propose that these DUBs act on one or more factors that control period length of the circadian clock through removal of their bound ubiquitin moieties, thus ensuring that the clock oscillates with a proper period even at elevated temperature

    Correlated Signatures of Gravitational-Wave and Neutrino Emission in Three-Dimensional General-Relativistic Core-Collapse Supernova Simulations

    Full text link
    We present results from general-relativistic (GR) three-dimensional (3D) core-collapse simulations with approximate neutrino transport for three non-rotating progenitors (11.2, 15, and 40 Msun) using different nuclear equations of state (EOSs). We find that the combination of progenitor's higher compactness at bounce and the use of softer EOS leads to stronger activity of the standing accretion shock instability (SASI). We confirm previous predications that the SASI produces characteristic time modulations both in neutrino and gravitational-wave (GW) signals. By performing a correlation analysis of the SASI-modulated neutrino and GW signals, we find that the correlation becomes highest when we take into account the time-delay effect due to the advection of material from the neutrino sphere to the proto-neutron star core surface. Our results suggest that the correlation of the neutrino and GW signals, if detected, would provide a new signature of the vigorous SASI activity in the supernova core, which can be hardly seen if neutrino-convection dominates over the SASI.Comment: 24 pages, 10 figures, Accepted for publication in Ap
    corecore